Skip to main content

Taxonomic, Ecological and Historical Considerations on the Deep-Water Benthic Mollusc Fauna of the Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The semi-enclosed and narrow Red Sea basin is characterized by bathyal zones in its axial sectors. It is determined by extreme hydrological parameters regarding its deep-water salinity and temperature which are a serious challenge to be coped with by deep-water benthos. Besides, it is separated from the adjacent Indian Ocean (Gulf of Aden) by a remarkably shallow sill that not only opposes easy transit for deep-water benthos but also exerts a strong control on the basin’s hydrology budget during sea-level fluctuations, likely causing pulsing basin-wide extinctions at times of low stands. Among the relevant macrobenthic groups inhabiting the deep Red Sea, Mollusca stand out as the more diverse phylum. Although the full taxonomic appreciation of the Red Sea deep-water molluscs is still unresolved, as many as 262 species are recorded to date from depths below 400 m (163 Gastropoda, 94 Bivalvia, 4 Scaphopoda and 1 Polyplacophora). Part of this fauna is represented by eurybathic species with a wide bathymetric range. A substantial aliquot is equipped with a larval strategy (planktotrophy) in principle enabling the crossing of the shallow sill from the Gulf of Aden. Various taxa occur also in the Indo-West Pacific, and only a few are putatively considered as Red Sea endemics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman AI (2006) A dual effect of upwelling and easterly jet stream on desert formation in southern and eastern parts of Yemen. In: Proceedings of the 2nd International Conference on Water Resources and Arid Environment, pp 1–22

    Google Scholar 

  • Al Saafani MA, Shenoi SSC (2007) Water masses in the Gulf of Aden. J Oceanogr 63:1–14

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Ulrich SU (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  Google Scholar 

  • Batang ZB, Papathanassiou E, Al-Suwailem A, Smith C, Salomidi M, Pethakis G, Alikunhi NM, Smith L, Mallon F, Yapici T, Fayad N (2012) First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94:247–253

    Article  Google Scholar 

  • Bieler R (1993) Architectonicidae of the Indo-Pacific (Mollusca, Gastropoda). Abh Naturwiss Ver Hamburg (NF) 30:1–376

    Google Scholar 

  • Bonaduce G, Ciliberto B, Minichelli G, Masoli M, Pugliese N (1983) The Red Sea benthic ostracodes and their geographical distribution. In: Maddocks RF (ed) Proceedings of the 8th International Symposium on Applications of Ostracoda, 26–29 July 1982, Department of Geosciences, University of Houston, pp 472–491

    Google Scholar 

  • Bonatti E, Colantoni P, Della Vedova B, Taviani M (1984) Geology of the Red Sea transitional region (22°N–25°N). Oceanol Acta 7:385–398

    Google Scholar 

  • Bouchet P (1976) Mise en évidence des stades larvaires planctoniques chez des gastéropodes prosobranches des étages bathyal et abyssal. Bull Mus Natl Hist Nat Paris 277:947–972

    Google Scholar 

  • Bouchet P, Taviani M (1992) The Mediterranean deep-sea fauna: pseudopopulations of Atlantic species? Deep Sea Res 39:169–184

    Article  Google Scholar 

  • Bouchet P, Warén A (1979) Planktotrophic larval development in deep-water gastropods. Sarsia 64:37–40

    Google Scholar 

  • Brunn A (1957) Deep sea and abyssal depths. Geol Soc Am Mem 67:641–672

    Article  Google Scholar 

  • Dayton PK, Hessler RR (1972) Role of biological disturbance in maintaining diversity in the deep-sea. Deep Sea Res 19:199–208

    Google Scholar 

  • Dijkstra HH, Janssen R (2013) Bathyal and abyssal Pectinoidea from the Red Sea and Gulf of Aden (Bivalvia: Propeamussiidae, Entoliidae, Pectinidae). Arch Molluskenkunde 142:181–214

    Article  Google Scholar 

  • Edelman-Furstenberg Y, Scherbacher M, Hemleben C, Almogi-Labin A (2001) Deep-sea benthic foraminifera from the central Red Sea. J Foramin Res 31:48–59

    Article  Google Scholar 

  • Ekman S (1953) Zoogeography of the Sea. Sidgwick and Jackson, London, 440 pp

    Google Scholar 

  • Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structures and drivers of cold seep ecosystems. Oceanography 22:58–74

    Article  Google Scholar 

  • Fricke HW, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser 11:113–117

    Article  Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red Sea upper twilight zone. Oecologia 71:29–37

    Article  Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Article  Google Scholar 

  • Gage JD (1978) Animals in deep-sea sediments. Proc R Soc Edinb 76B:77–93

    Google Scholar 

  • Gage JD, Tyler PA (eds) (1991) Deep-Sea Biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge, 504 pp

    Google Scholar 

  • Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GLJ, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A (2010) Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Adv Mar Biol 58:1–95

    Article  Google Scholar 

  • Grassle JF (1991) Deep-sea benthic biodiversity. Bioscience 41:464–469

    Article  Google Scholar 

  • Gvirtzman G, Buchbinder B, Sneh A, Nir Y, Friedman GM (1977) Morphology of the Red Sea fringing reefs: a result of erosional pattern of the last-glacial low-stand sea level and the following Holocene recolonization. Mém Bureau Rech Géol Minières 89:480–491

    Google Scholar 

  • Hessler RR, Sanders HL (1967) Faunal diversity in the deep-sea. Deep-Sea Res 14:65–78

    Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotter, London, 239 pp

    Google Scholar 

  • Jablonski D, Lutz RA (1980) Molluscan larval shell morphology: ecological and paleontological applications. Top Geobiol 1:323–377

    Article  Google Scholar 

  • Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89

    Article  Google Scholar 

  • Janssen AW (2007) Holoplanktonic Mollusca (Gastropoda) from the Gulf of Aqaba, Red Sea and Gulf of Aden (Late Holocene-Recent). The Veliger 49:140–195

    Google Scholar 

  • Janssen R (1989) Preliminary report on the deep-water mollusk fauna of the Red Sea. In: Abstracts 10th international malacological congress, Tübingen, 115 pp

    Google Scholar 

  • Janssen R, Taviani M (1985) Factors constraining the composition of the Red Sea mollusc fauna. In: Abstracts 4th deep-sea biology symposium, Hamburg, 23–29 June 1985

    Google Scholar 

  • Judd AG, Hovland M (2007) Seabed fluid flow; impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge, 492 pp

    Book  Google Scholar 

  • Klausewitz W (1986) Zoogeographic analysis of the vertical distribution of the deep Red Sea ichthyofauna, with a new record. Senckenb Marit 17(4/6):279–292

    Google Scholar 

  • Knudsen J (1967) The deep-sea Bivalvia. The John Murray Expedition 1933–34 Scientific Reports 11:237–343, pls 1–3

    Google Scholar 

  • Knudsen J (1970) The systematics and biology of abyssal and hadal Bivalvia. Galathea Report 11:241, pls 20

    Google Scholar 

  • Koslow JA (2007) The silent deep: the discovery, ecology and conservation of the deep-sea. University of Chicago Press, Chicago, 288 pp

    Google Scholar 

  • Lambeck K, Purcell A, Flemming NC, Vita-Finzi C, Alsharekh AM, Bailey GN (2011) Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa. Quatern Sci Rev 30:3542–3574

    Article  Google Scholar 

  • Levin LA, Dayton PK (2009) Ecological theory and continental margins: where shallow meets deep. Trends Ecol Evol 24:606–617

    Article  Google Scholar 

  • Ligi M, Bonatti E, Taviani M (2011) L’Oceano del Faraone. Darwin 95:90–95

    Google Scholar 

  • Ligi M, Bonatti E, Rasul N (this volume) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus Deeps, central Red Sea

    Google Scholar 

  • Marenzeller E von (1907) Expedition S.M. Schiff “Pola” in das Rote Meer, nördliche und südliche Hälfte 1895/96–1897/98 - Zoologische Ergebnisse 25; Tiefseekorallen. Denkschr mathem-naturwiss Cl k Akad Wissensch Wien 80:13–25

    Google Scholar 

  • McClain CR, Rex MA, Etter RJ (2009) Patterns in deep-sea macroecology. In: Witman JD, Roy K (eds) Marine macroecology. University of Chicago Press, Chicago, pp 65–100

    Chapter  Google Scholar 

  • Melvill JC, Standen R (1907) The Mollusca of the Persian Gulf, Gulf of Oman and Arabian Seas as evidenced mainly through the collections of Mr. F.W. Townsend, 1893–1906, with descriptions of new species, Part 2. Pelecypoda. In: Proc zool Soc London (1906), 54, pp 783–848

    Google Scholar 

  • Michaelis W, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in the Red Sea sediments from the Kebrit and Shaban deeps. Appl Geochem 5:103–105

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol—Annu Rev 8:73–202

    Google Scholar 

  • Morcos SA, Abdallah AM (2012) Oceanography of the Gulf of Aden John Murray-Mabahiss expedition 1933–1934 revisited. Egypt J Aquat Res 38:77–91

    Article  Google Scholar 

  • Mühlenhardt-Siegel U (2008) The Cumacea of the Red Sea and Gulf of Aden, with the description of four new species and one genus. Zootaxa 1828:1–17

    Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pages C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749–754

    Article  Google Scholar 

  • Pfannkuche O (1993) Benthic standing stock and metabolic activity in the bathyal Red Sea from 17°N to 27°N. Mar Ecol 14:67–79

    Article  Google Scholar 

  • Poutiers J-M, Bernard FR (1995) Carnivorous bivalve molluscs (Anomalodesmata) from the tropical western Pacific Ocean, with a proposed classification and a catalogue of Recent species. In: Bouchet P (ed) Résultats des Campagnes Musorstom, vol 14. Mém Mus natl Hist nat Paris, 167, pp 107–187

    Google Scholar 

  • Quadfasel D (2001) Red Sea circulation. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences. Academic Press, San Diego, pp 2366–2376

    Chapter  Google Scholar 

  • Qurban MA, Krishnakumar PK, Joydas TV, Manikandan KP, Ashraf TTM, Quadri SI, Wafar M, Qasem A, Cairns SD (2014) In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia. Deep-Sea Research Part I, doi:10.1016/j.dsr.2014.04.002

  • Rex MA (1983) Geographic patterns of species diversity in the deep-sea benthos. In: Rowe GT (ed) The Sea 8. Wiley, New York, pp 453–472

    Google Scholar 

  • Rex MA, Etter RJ (2010) Deep-Sea biodiversity: pattern and scale. Harvard University Press, Cambridge, 354 pp

    Google Scholar 

  • Rex MA, Crame JA, Stuart CT, Clarke A (2005a) Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity? Ecology 86:2288–2297

    Article  Google Scholar 

  • Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Waren A (2005b) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178

    Article  Google Scholar 

  • Roder C, Berumen ML, Bouwmeester J, Papathanassiou E, Al-Suwailem A, Voolstra CR (2013) First biological measurements of deep-sea corals from the Red Sea. Scientific Reports 3, Article number 2802

    Google Scholar 

  • Rowe GT (ed) (1983) Deep-sea biology. Wiley, New York, 560 pp

    Google Scholar 

  • Rützen-Kositzkau B von (1999) Taphonomie und Biogeographie des hartteiltragenden Makrobenthos im Tiefwasser des Roten Meeres. Beringeria 24:1–150

    Google Scholar 

  • Ruhl HA, Smith KL Jr (2004) Shifts in deep-sea community structure linked to climate and food supply. Science 305:17006–17011

    Article  Google Scholar 

  • Sabelli B, Taviani M (2014) The making of the Mediterranean molluscan biodiversity. In: Goffredo S, Dubinsky Z (eds) The mediterranean sea: its history and present challenges. Springer, Dordrecht, pp 285–306

    Chapter  Google Scholar 

  • Sanders HL, Hessler RR (1969) Ecology of the deep-sea benthos. Science 163:1419–1424

    Article  Google Scholar 

  • Schmidt M, Al-Farawati R, Botz R (this volume) Geochemical classification of brine-filled Red Sea deeps

    Google Scholar 

  • Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos Trans R Soc B 362:2061–2078

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  Google Scholar 

  • Snyder AA (2002) Fusinus dovpeledi, a new species (Gastropoda: Fasciolariidae) from the Red Sea, and range extension for two other species. Nautilus 116:56–58

    Google Scholar 

  • Sturany R (1900a) Diagnosen neuer Gastropoden aus dem Rothen Meere, als Vorläufer einer Bearbeitung der gesammten von S.M. Schiff “Pola” gefundenen Gastropoden. Anz k Akad Wissensch Wien, mathem-naturwiss Classe 37:197–201

    Google Scholar 

  • Sturany R (1900b) Diagnosen neuer Gastropoden aus dem Rothen Meere, als Vorläufer einer Bearbeitung der gesammten von S.M. Schiff “Pola” gefundenen Gastropoden. (Fortsetzung.). Anz k Akad Wissensch Wien, mathem-naturwiss Classe 37:208–212

    Google Scholar 

  • Sturany R (1901) Expedition S.M. Schiff “Pola“ in das Rothe Meer, nördliche und südliche Hälfte. 1895/96 und 1897/98. Zoologische Ergebnisse XIV. Lamellibranchiaten des Rothen Meeres. Denkschr mathem-naturwiss Cl k Akad Wissensch Wien 69:255–295, pls 1–7

    Google Scholar 

  • Sturany R (1904) Expedition S.M. Schiff “Pola“ in das Rothe Meer, nördliche und südliche Hälfte. 1895/96 und 1897/98. Zoologische Ergebnisse XXIII. Gastropoden des Rothen Meeres. Denkschr mathem-naturwiss Cl k Akad Wissensch Wien 74:209–283, pls 1–7

    Google Scholar 

  • Sysoev AV (1996) Deep-sea conoidean gastropods collected by the John Murray Expedition, 1933–34. Bull Nat Hist Mus Lond (Zool) 62(1):1–30

    Google Scholar 

  • Taviani M (1985). The planktotrophic larval development: A strategy enabling deep-sea benthos to colonize epicontinental seas separated by shallow sills. In: Abstracts 4th Deep Sea Biology Symposium, Hamburg, 23–29 June 1985

    Google Scholar 

  • Taviani M (1994) The ever changing climate: late Quaternary paleoclimatic modifications of the Red Sea region as deduced from coastal and deep-sea geological data. In: Proceedings of the Egyptian-Italian seminar “on geosciences and archeology in the Mediterranean countries”, Geol Surv Egypt Spec Publ 70:193–200

    Google Scholar 

  • Taviani M (1998a) Axial sedimentation of the Red Sea Transitional Region (22°–25°N): pelagic, gravity flow and sapropel deposition during the late Quaternary. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 467–478

    Google Scholar 

  • Taviani M (1998b) Post-Miocene reef faunas of the Red Sea: glacio-eustatic controls. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 574–582

    Google Scholar 

  • Taviani M (1998c) Stable tropics not so stable: climatically-driven extinctions of reef-associated molluscan assemblages (Red Sea and Western Indian Ocean; Last Interglaciation to Present). In: Camoin GF, Davis G (eds) Reefs and Carbonate platforms in the Pacific and Indian oceans, vol 25. Special Publication International Association Sedimentologists, pp 69–76

    Google Scholar 

  • Taviani M (2011) The deep-sea chemoautotroph microbial world as experienced by the Mediterranean metazoans through time. In: Reitner J, Qúeric N-V, Arp G (eds) Advances in Stromatolite Geobiology, vol 2131. Lecture notes in earth sciences, Springer, Heidelberg, pp 277–295

    Google Scholar 

  • Taviani M (2014) Marine chemosynthesis in the Mediterranean Sea. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: Its history and present challenges. Springer, Dordrecht, pp 69–83

    Chapter  Google Scholar 

  • Taviani M, López Correa M, Zibrowius H, Montagna P, McCulloch M, Ligi M (2007) Last Glacial deep-water scleractinian corals from the Red Sea. Bull Mar Sci 81:361–370

    Google Scholar 

  • Thiel H (1975) The size structure of the deep-sea benthos. Internationale Rev ges Hydrobiol Hydrographie 60:575–606

    Google Scholar 

  • Thiel H (1979) First quantitative data on Red Sea deep benthos. Mar Ecol Prog Ser 1:347–350

    Article  Google Scholar 

  • Thiel H (1980) Benthic investigations of the deep Red Sea. Cruise Reports: R.V. “Sonne”– Meseda I (1977), R.V. “Valdivia” – Meseda II (1979). Cour Forschungsinst Senckenberg 40:1–35

    Google Scholar 

  • Thiel H (1989) Structural aspects of the deep-sea benthos. Ambio Spec Rep 6:25–31

    Google Scholar 

  • Thiel H, Pfannkuche O, Theeg R, Schriever G (1987) Benthic metabolism and standing stock in the Central and Northern deep Red Sea. Mar Ecol 8:1–20

    Article  Google Scholar 

  • Tunnicliffe V (1991) The Biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol 29:319–407

    Google Scholar 

  • Türkay M (1986) Crustacea Decapoda Reptantia der tiefsee des Roten Meeres. Senckenb Marit 18:123–185

    Google Scholar 

  • Türkay M (1996) Composition of the deep Red Sea macro- and megabenthic invertebrate fauna. Zoogeographic and ecological implications. In: Uiblein F, Ott J, Stachowitsch M (eds) Deep-sea and extreme shallow-water habitats: affinities and adaptations, Biosystematics and Ecology series, 11. pp 43–59

    Google Scholar 

  • Tyler PA (1988) Seasonality in the deep-sea. Oceanogr Mar Biol Annu Rev 26:227–258

    Google Scholar 

  • Van Dover CL (2000) The Ecology of deep-sea hydrothermal vents. Princeton University Press, New Jersey, pp 1–424

    Google Scholar 

  • Werner F, Lange K (1975) A bathymetric survey of the sill area between the Red Sea and the Gulf of Aden. Geol Jahrb D13:125–130

    Google Scholar 

  • Wilson GDF, Hessler RR (1987) Speciation in the deep sea. Annu Rev Ecol Syst 18:185–207

    Article  Google Scholar 

  • Young CM, Eckelbarger KJ (1994) Reproduction, larval biology, and recruitment of the deep-sea benthos. Columbia University Press, New York, pp 1–336

    Google Scholar 

Download references

Acknowledgments

We are grateful to masters, crew and colleagues onboard German and Italian research ships during the expeditions responsible for collecting the great majority of mollusc samples considered in this study. Thanks are due to Najeeb M.A. Rasul for the kind invitation to present our data at the workshop held in Jeddah in 2013 and for editorial handling. Sigrid Hof is thanked for the preparation of the figures. We acknowledge Henk Dekker, Bruno Sabelli and Hjalmar Thiel for their constructive criticism that greatly helped improving the quality of the paper. This article contributes to PRIN2012 Programme (Project 20125JKANY_002, P.I. M.Ligi) and is Ismar-CNR, Bologna scientific contribution n. 1824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Janssen .

Editor information

Editors and Affiliations

Appendix

Appendix

Preliminary list of benthic mollusc species from the deep Red Sea (> 400 m) (compiled by the senior author)

Enumeration of species is based exclusively on reliable autochthonous records. Species recorded by fragments only or by single, often badly preserved specimens which obviously have been transported from shallow water environments are not taken into account.

  • Polyplacophora

  • Ischnochitonidae

  • Ischnochiton sp.

  • Bivalvia

  • Nuculidae

  • Nucula consentanea Melvill and Standen 1907

  • Manzanellidae

  • Nucinella sp.

  • Nuculanidae

  • Jupiteria sp.

  • Nuculana (Lembulus) sculpta (Issel 1869)

  • Crenellidae

  • Dacrydium sp.

  • Solamen vaillanti (Issel 1869)

  • Mytilidae

  • Amygdalum aff. watsoni (Smith 1885)

  • Brachidontes pharaonis (Fischer 1870)

  • Idas sp.

  • Modiolus sp.

  • Septiferidae

  • Septifer forskali (Dunker 1855)

  • Arcidae

  • Acar plicata (Dillwyn 1817)

  • Arca sp.

  • Barbatia sulcata (Lamarck 1819)

  • Bathyarca anaclima (Melvill and Standen 1907)

  • Bathyarca sp.

  • Bentharca asperula (Dall 1881)

  • Bentharca sp.

  • Ribriarca polycymoides (Thiele & Jaeckel 1931)

  • Limopsidae

  • Limopsis elachista Sturany 1901

  • Gryphaeidae

  • Parahyotissa numisma (Lamarck 1819)

  • Ostreidae

  • Ostrea deformis Lamarck 1819

  • Pteriidae

  • Pteria sp.

  • Malleidae

  • Malvufundus regulus (Forsskal 1775)

  • Pectinidae

  • Cryptopecten nux (Reeve 1853)

  • Delectopecten alcocki (E.A. Smith 1904)

  • Delectopecten musorstomi Poutiers 1981

  • Spondylidae

  • Spondylus proneri Lamprell & Healy 2001

  • Anomiidae

  • Pododesmus caelata (Reeve 1859)

  • Anomia achaeus Gray 1850

  • Dimyidae

  • Dimya sp.

  • Limidae

  • Ctenoides annulata (Lamarck 1819)

  • Limea pectinata H. Adams 1870

  • Entoliidae

  • Pectinella aequoris Dijkstra 1991

  • Propeamussiidae

  • Cyclopecten erythraeensis Dijkstra and Janssen 2013

  • Cyclopecten meteorae Dijkstra and Janssen 2013

  • Parvamussium formosum (Melvill and Standen 1907)

  • Parvamussium scitulum (E.A. Smith 1885)

  • Parvamussium siebenrocki (Sturany 1901)

  • Parvamussium thyrideum (Melvill and Standen 1907)

  • Propeamussium steindachneri (Sturany 1901)

  • Similipecten eous (Melvill and Standen 1907)

  • Carditidae

  • Cardites variegata Bruguière 1792

  • Lucinidae

  • Anodontia aff. edentula (Linnaeus 1758)

  • Codakia sp.

  • Ctena divergens (Philippi 1850)

  • Lamellolucina dentifera (Jonas 1846)

  • Lucinidae sp. 1

  • Lucinidae sp. 2

  • Myrtea ? sp.

  • Myrtea sp. 1

  • Myrtea sp. 2

  • Parvilucina sp.

  • Thyasiridae

  • Thyasira sp.

  • Cardiidae

  • Fulvia australis (Sowerby 1834)

  • Fragum nivale (Reeve 1845)

  • Papillocardium papillosum (Poli 1795)

  • Tellinidae

  • Angulus flaccus (Römer 1871)

  • Arcopella isseli (H. Adams 1871)

  • Moerella lactea (H. Adams 1871)

  • Psammotreta praerupta (Salisbury 1934)

  • Semelidae

  • Ervilia scaliola (Issel 1869)

  • Leptomyaria etesiaca (Hedley 1909)

  • Semele fragillima (Issel 1869)

  • Syndosmya cistula Melvill and Standen 1907

  • Solecurtidae

  • Azorinus coarctatus (Gmelin 1791)

  • Kelliellidae

  • Kelliella sp.

  • Ungulinidae

  • Diplodonta subrotundata Issel 1869

  • Veneridae

  • Paphia undulata (Born 1778)

  • Tapes cf. deshayesi (Hanley 1844)

  • Basterotiidae

  • Basterotia borbonica (Deshayes 1863)

  • Galeommatidae

  • Amphilepida ? sp.

  • Kellia ? sp.

  • Pholadidae

  • Xylophaga sp. 1

  • Xylophaga sp. 2

  • Teredinidae

  • Teredinidae sp. 1

  • Teredinidae sp. 2

  • Corbulidae

  • Corbula sp.

  • Varicorbula sp.

  • Cetoconchidae

  • Cetoconcha intracta (Sturany 1901)

  • Cuspidariidae

  • Cardiomya alcocki (Smith 1894)

  • Cardiomya sp.

  • Cuspidaria brachyrhynchus Sturany 1901

  • Cuspidaria corrugata Prashad 1932

  • Cuspidaria dissociata Sturany 1901

  • Cuspidaria hindsiana (A. Adams 1864)

  • Cuspidaria steindachneri Sturany 1901

  • Pseudoneaera minor Thiele & Jaeckel 1931

  • Pseudoneaera thaumasia Sturany 1901

  • Rhinoclama sp.

  • Parilimyidae

  • Panacca sp.

  • Verticordiidae

  • Haliris sp.

  • Euciroa sp.

  • Lyonsiidae

  • Lyonsia sp.

  • Scaphopoda

  • Dentaliidae

  • Graptacme sp.

  • Fustiariidae

  • Pseudantalis sp.

  • Gadilidae

  • Gadila sp.

  • Polyschides sp.

  • Gastropoda

  • Fissurellidae

  • Emarginula sp. 1

  • Emarginula sp. 2

  • Rimula cumingii A. Adams 1853

  • Zeidora (Nesta) nesta (Pilsbry 1891)

  • Zeidora calceolina A. Adams 1860

  • Lepetellidae

  • Lepetella simplicior (Melvill 1912)

  • Lepetella ? sp.

  • Anatomidae

  • Anatoma agulhasensis (Thiele 1925)

  • Anatoma japonica (A. Adams 1862)

  • Scissurellidae

  • Scissurella reticulata Philippi 1853

  • Scissurella rota Yaron 1983

  • Scissurella sp.

  • Sinezona singeri Geiger 2006

  • Sukashitrochus dorbignii (Audouin 1826)

  • Seguenziidae

  • Visayaseguenzia compsa (Melvill 1904)

  • Chilodontidae

  • Danilia sp.

  • Herpetopoma xeniolum (Melvill 1918)

  • Perrinia stellata (A. Adams 1864)

  • Solariellidae

  • Ilanga illustris (Sturany 1900)

  • Zetela mutabilis (Schepman 1908)

  • Trochidae

  • Fossarina mariei (Fischer 1890)

  • Pagodatrochus variabilis (H. Adams 1873)

  • Pseudostomatella papyracea (Gmelin 1791)

  • Areneidae

  • Arene echinacantha (Melvill & Standen 1903)

  • Turbinidae

  • Bolma sp.

  • Skeneidae

  • Cirsonella sp. 1

  • Cirsonella sp. 2

  • Leucorhynchia crossei Tryon 1888

  • Skeneidae sp. 1

  • Skeneidae sp. 2

  • Cocculinidae

  • Cocculinidae ? sp. 1

  • Cocculinidae ? sp. 2

  • Provannidae

  • Provanna ? sp.

  • Cerithiidae

  • Cerithium gloriosum Houbrick 1992

  • Turritellidae

  • Turritella sp.

  • Naticidae

  • Natica sp.

  • Iravadiidae

  • Ceratia sp.

  • Rissoidae

  • Lucidestea ? sp.

  • Rissoina sp.

  • Tornidae

  • Circulus octoliratus (Carpenter 1856)

  • Cochliolepis sp.

  • Teinostoma sp.

  • Bursidae

  • Bufonaria gnorima (Melvill 1918)

  • Bufonaria albivaricosa (Reeve 1844) ? (fide Sturany) = gnorima ?

  • Cassidae

  • Semicassis saburon (Bruguière 1792) (fide Sturany) = faurotis (Jousseaume 1888) ?

  • Tonnidae

  • Tonna galea (Linnaeus 1758)

  • Hipponicidae

  • Cheilea cicatricosa (Reeve 1858)

  • Xenophoridae

  • Stellaria solaris (Linnaeus 1764)

  • Epitoniidae

  • Epitonium cf. scalare (Linnaeus 1758)

  • Epitonium cultellicostatum (Boury 1913)

  • Epitonium deflersi (Jousseaume 1912) ?

  • Epitonium umbilicatum (Pease 1869)

  • Opalia bicarinata (Sowerby 1844)

  • Epitoniidae ? sp.

  • Eulimidae

  • Eulima (s.l.) sp. 1

  • Eulima (s.l.) sp. 2

  • Melanella sp. 1

  • Melanella sp. 2

  • Niso sp.

  • Triphoridae

  • Euthymella concors (Hinds 1843)

  • Inella sp.

  • Metaxia sp.

  • Triphora adamsi (Deshayes 1863)

  • Viriola tricincta (Dunker 1860)

  • Cerithiopsiidae

  • Cerithiopsis sp.

  • Newtoniellidae

  • Cerithiella ? sp.

  • Buccinidae

  • Pollia rubiginosa (Reeve 1846) (fide Sturany)

  • Colubrariidae

  • Colubraria cf. tenera (Gray 1839)

  • Columbellidae

  • Euplica festiva (Deshayes in Laborde 1834)

  • Mitrella erythraeensis Sturany 1900

  • Mitrella nomanensis (Sturany 1900)

  • Fasciolariidae

  • Fusinus bifrons (Sturany 1900)

  • Nassariidae

  • Nassarius lathraius (Sturany 1900)

  • Nassarius steindachneri (Sturany 1900)

    Note There is controversy about the taxonomy and nomenclature of the Nassarius species described by Sturany. The view adopted here is that of the senior author, based on examination of type material. Further study is necessary to solve the problems.

  • Muricidae

  • Murex forskoehlii Röding 1798

  • Costellariidae

  • Costellaria casta (H. Adams 1872)

  • Cystiscidae

  • Granulina sp.

  • Mitridae

  • Mitra gonatophora Sturany 1903

  • Olividae

  • Ancilla eburnea (Deshayes 1830)

  • Ancilla lineolata (A. Adams 1853)

  • Ancilla cinnamomea Lamarck 1801 ? (fide Sturany)

  • Borsoniidae

  • Microdrillia circumvertens (Melvill and Standen 1901)

  • Tomopleura reevei (C.B. Adams 1850)

  • Clathurellidae

  • Clathurella pertabulata (Sturany 1903)

  • Cochlespiridae

  • Thatcheriasyrinx orientis (Melvill 1904)

  • Conidae

  • Conus grangeri G.B. Sowerby III 1900

  • Drilliidae

  • Clavus inchoatus (Sturany 1903)

  • Clavus siebenrocki (Sturany 1903)

  • Clavus sp. 1

  • Clavus sp. 2

  • Splendrillia sp. 1

  • Splendrillia sp. 2

  • Horaiclavidae

  • Paradrillia nannodes (Sturany 1903)

  • Mangeliidae

  • Antiguraleus sp.

  • Leiocithara sp.

  • Pseudoraphitoma ? sp.

  • Pseudoraphitoma kilburni Morassi & Bonfitto 2001

  • Pseudoraphitoma sp. 1

  • Pseudoraphitoma sp. 2

  • Pseudomelatomidae

  • Compsodrillia ? sp. 1

  • Compsodrillia ? sp. 2

  • Inquisitor ? sp.

  • Ptychobela cf. flavidula (Lamarck 1822)

  • Ptychobela sp.

  • Raphitomidae

  • Aliceia sp.

  • Daphnella sp.

  • Favriella sp.

  • Mioawateria sp.

  • Pseudodaphnella ? sp.

  • Rimosodaphnella ? sp.

  • Taranidaphne amphitrites (Melvill & Standen 1903)

  • Taranidaphne dufresnei Morassi & Bonfitto 2001

  • Teretia sp.

  • Veprecula vepratica (Hedley 1903)

  • Turridae

  • Gemmula aff. monilifera (Pease 1860)

  • Gemmula sp. 1

  • Gemmula sp. 2

  • Unedogemmula indica (Röding 1798)

  • Xylodisculidae

  • Xylodiscula sp.

  • Acteonidae

  • Acteon“ sp. 1

  • Acteon“ sp. 2

  • Acteon“ sp. 3

  • Architectonicidae

  • Pseudotorinia yaroni Bieler 1993

  • Solatisonax acutecarinata (Thiele 1925)

  • Pyramidellidae

  • Chrysallida comacum (Melvill 1910)

  • Chrysallida pupula A. Adams 1861

  • Chrysallida sp.

  • Miralda gemma (A. Adams 1861)

  • Odostomella chorea (Hedley 1909)

  • Odostomia anabathmis Melvill 1910

  • Odostomia eutropia Melvill 1899

  • Odostomia sp.

  • Ondina? sp.

  • Oscilla appeliusi (Hornung & Mermod 1925)

  • Pyramidella pulchella (A. Adams 1854)

  • Pyramidellidae gen. sp. indet.

  • Pyrgulina comacea Melvill 1910

  • Pyrgulina tenerrima (Melvill 1906)

  • Syrnola massauensis (Hornung & Mermod 1924)

  • Syrnola sp. 1

  • Syrnola sp. 2

  • Syrnola sp. 3

  • Turbonilla sp. 1

  • Turbonilla sp. 2

  • Turbonilla sp. 3

  • Turbonilla sp. 4

  • Turbonilla sp. 5

  • Turbonilla sp. 6

  • Turbonilla sp. 7

  • Turbonilla sp. 8

  • Turbonilla sp. 9

  • Turbonilla sp. 10

  • Turbonilla sp. 11

  • Turbonilla sp. 12

  • Ringiculidae

  • Ringicula sp.

  • Haminoeidae

  • Haminoea sp.

  • Diniatys dentifer (A. Adams 1850)

  • Cylichnidae

  • Mnestia sp.

  • Roxania lithensis (Sturany 1903)

  • Philinidae

  • Phanerophthalmus smaragdinus (Rüppell & Leuckart 1830)

  • Philine sp.

  • Retusidae

  • Retusa sp.

  • Volvulella sp.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janssen, R., Taviani, M. (2015). Taxonomic, Ecological and Historical Considerations on the Deep-Water Benthic Mollusc Fauna of the Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_29

Download citation

Publish with us

Policies and ethics