Skip to main content

Raised Coral Reefs and Sediments in the Coastal Area of the Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Along the Red Sea, narrow coastal plains ascend directly into fault-bounded blocks within a few kilometers of the shoreline. Littoral areas on both sides of the Red Sea are characterized by mixed sedimentation relating to a complex system of fringing and barrier reefs and alluvial fans. These marine sediments are uplifted to altitudes rarely exceeding 50 m. However, although terraces are well developed on both sides of the basin there is no apparent correlation, the possible exception being the youngest level situated about 2 m above present sea level. Raised coral reefs result from either the corrosive action of waves or from local erosion by occasional torrents creating low cliffs and exposures just above high-tide level. Each reef unit exhibits in a short distance lateral facies changes, which begin at the shore with the beach facies, mainly composed of siliciclastics, and end at the reef crest zone with transition to the fore slope made up of carbonate sediments. A strong similarity can be noticed between sedimentary facies of ancient Pleistocene sediments and those now present in modern fringing reefs. Reefs with their siliciclastic associations occur in the form of repeated cycles reflecting tectonic effects and/or sea level changes. Reef sequences exhibit different degrees of diagenetic alteration, which are reflected by a gradual change of skeletal particles and the early-formed cement, from aragonite and high Mg-calcite to low Mg-calcite. Tectonism controls the areal distribution of the depositional systems and influences the number, thickness, extension, and elevations of the reef sequences. Each sequence in each area can be uniquely correlated to the overall (global) population of dated terraces. Coastal areas of the Red Sea are under stress from a variety of human activities and many have experienced widespread degradation, especially around Hurghada and Jeddah. Hotel, resort and other developments along the coast of Egypt are growing rapidly, destroying raised reefs and threatening valuable coral reef ecosystems. Some areas along the coast suffer from construction problems that are associated with coral reefs. These problems include ground settlement and low bearing capacity which are mainly due to the low shear resistance and high porosity of reef sediments. These problems greatly affect the safe and economic land utilization of the coasts. Prediction of the future changes along the Red Sea coast would give guide lines to what will happen due to the varying nature of the coast. Such predictions would have implications for future social and economic development along the coast. Effective and integrated coastal zone management programs are critical to sustaining the natural resources of the Red Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleem AA(1992) The occurrence of the sea-grass: Halophila stipulacea on the west coast of Egypt. Bull Fac Sci Univ Alexandria 4:79–84

    Google Scholar 

  • Al-Rifaiy IA, Cherif OH (1988) The fossil coral reefs of Al-Aqaba, Jordan. Facies 18:2019–2230

    Article  Google Scholar 

  • Al-Sayari SS, Dullo WC, Hötzl H, Jado AR, Zötl JG (1984a) The Quaternary along the coast of the Gulf of Aqaba. In: Jado AR,Zötl JG (eds) Quaternary period of Saudi Arabia, vol 2, pp 32–47

    Google Scholar 

  • Al-Sayari SS, Hötzl H, Moser H, Rauert W, Zötl JG (1984b) Quaternary from Dhuba to Al Wajh. In: Jado AR, Zötl JG (eds) Quaternary period of Saudi Arabia, vol 2, pp 66–82

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG (1990) U-Th ages obtained by mass spectrometry in corals from Barbados: sea-level during the past 130,000 years. Nature 346(6283):456–458

    Article  Google Scholar 

  • Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382:241–244

    Article  Google Scholar 

  • Bathurst RCG (1975) Development in sedimentology 12: carbonate Sediments and their diagenesis, 2nd edn. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Blanchon P, Eisenhauer A, Fietzke J (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458 (7240):881–884. doi:10.1038/nature07933

  • Behairy AKA (1980) Clay and carbonate mineralogy of the reef sediments, west coast of Saudi Arabia, vol 4. Bulletin of Faculty of Science, King Abdulaziz University, Jeddah, pp 265–279

    Google Scholar 

  • Bloom AL, Broecker WS, Chappell JMA, Mattews RK, Mesolella KJ (1974) Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates on the Huon Peninsula. N G Quatern Res 4(2):185–205

    Article  Google Scholar 

  • Bosworth W, Taviani M (1996) Late Quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: Evidence from uplifted coral terraces, mesoscopic fault arrays, and borehole breakouts. Tectonics 15(4):791–802

    Article  Google Scholar 

  • Butzer KW, Hansen CL (1968) The coastal plain of Mersa Alam. In: Butzer KW, Hansen CL (eds) Desert and river in Nubia: geomorphology and prehistoric environments at the Aswan reservoir. University of Wisconsin Press, Madison, pp 395–432

    Google Scholar 

  • Chappell J (1974) Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Bull Geol Soc Am 85(4):553–570

    Article  Google Scholar 

  • Chappell J (2002) Sea level changes forced ice breakouts in the last glacial cycle: new results from coral terraces. Quatern Sci Rev 21(10):1229–1240

    Article  Google Scholar 

  • Chappell J, Veeh HH (1978) 230Th/234U support of an interstadial sea level of −40 m at 30,000 yr BP. Nature 276:602–604

    Article  Google Scholar 

  • Chappell J, Shackleton NJ (1986) Oxygen isotopes and sea level. Nature 324(6093):137–140

    Article  Google Scholar 

  • Chappell J, Omura A, Esat T, McCulloch M, Pandolfi J, Ota Y, Pillans B (1996) Reconciliation of late quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236

    Article  Google Scholar 

  • Dullo WC (1984) Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea coast, Saudi Arabia. Paleontographica Am 54:254–260

    Google Scholar 

  • Dullo WC (1986) Variation in diagenetic sequences: an example from Pleistocene coral reefs, Red Sea, Saudi Arabia. In: Schroeder JH, Purser BH (eds) Reef Diagenesis. Springer, Heidelberg, pp 77–90

    Chapter  Google Scholar 

  • Dullo WC (1990) Facies, fossil record, and age of Pleistocene reefs from the Red Sea (Saudi Arabia). Facies 22(1):1–45

    Article  Google Scholar 

  • Dullo WC, Montaggioni L (1998) Modern Red Sea coral reefs: a review of their morphologies and zonation. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in Rift Basins: Red Sea-Gulf of Aden. Springer, The Netherlands, pp 583–594

    Chapter  Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238U–234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Article  Google Scholar 

  • El-Asmar HM, Attia GM (1996) Diagenetic trends in Quaternary coral reef terraces, Ras Mohammed-Sharm El Sheikh coast, Southern Sinai, Egypt. Sedimentology Egypt 4:19–31

    Google Scholar 

  • El Moursi M (1992) Evolution quaternaire de la plainecotiere de la Mer Rouge entre Hurghada et Marsa Alam, Egypte. These nouveau doctorat, Universited’Aix-Marseille ii, no. 92AiX22087, 245 pp

    Google Scholar 

  • El Moursi M, Hoang CT, El Fayoumy IE, Hegab O, Faure H (1994) Pleistocene evolution of the Red Sea coastal plain, Egypt: Evidence from uranium-series dating of emerged reef terraces. Quatern Sci Rev 4:345–359

    Google Scholar 

  • El-Shafie M (2010) Sustainability versus mega urban development projects. Int J Civil Environ Eng Int J Eng Sci 10(4):1–7

    Google Scholar 

  • Esat TM, Yokoyama Y (2006) Growth patterns of the last ice age coral terraces at Huon Peninsula. Global Planet Change 54:216–224

    Article  Google Scholar 

  • Fathy E (1994) Physiography and quaternary sedimentation of the coastal zone in the South Sinai. Egypt Acta Geologica Hungarica 37(3–4):311–325

    Google Scholar 

  • Faure H, Hoang CT, Lalou C (1980) Datations230Th/234U des calcaires coralliens et mouvements verticauxà Djibouti. Bulletin de la Societe Geologique de France, Paris, series 7 22(6):959–962

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. University of Texas, Hemphill Publication Company, Texas, 182 pp

    Google Scholar 

  • Friedman GM (1965) Recent carbonate sediments of the Gulf of Aqaba, Red Sea, pp 67–68. Geological Society of America, Abstracts for 1964, Special paper 82, 400 pp

    Google Scholar 

  • Friedman GM (1985) The problem of submarine cement in classifying reef rock: an experience in frustration. In: Schneidermann N, Harris PM (eds) Carbonate cements. Society for Sedimentary Geology Special Publication No. 36, Tulsa, pp 117–121

    Chapter  Google Scholar 

  • Gallup C, Edwards RL, Johnson RG (1994) The timing of high sea levels over the past 200,000 years. Science 263(5148):796–800

    Article  Google Scholar 

  • Global Environment Facility (1997) Report 2: baseline studies. Egyptian global environment facility Red Sea coastal and marine resource management project, Cairo, Egypt, 109 pp

    Google Scholar 

  • Gvirtzman G (1994) Fluctuations of sea level during the past 400,000 years: the record of Sinai, Egypt (northern Red Sea). Coral Reefs 4:203–214

    Article  Google Scholar 

  • Gvirtzman G, Buchbinder B (1978) Recent and Pleistocene coral reefs and coastal sediments of the Gulf of Eilat. In: Guidebook 10th international sedimentological congress, Jerusalem, pp 162–191

    Google Scholar 

  • Gvirtzman G, Friedman GM (1977) Sequence of progressive diagenesis in coral reefs: studies in geology. Bull Am Assoc Pet Geol 4:357–380

    Google Scholar 

  • Gvirtzman G, Kronfeld J, Buchbinder B (1992) Dated coral reefs of southern Sinai (Red Sea) and their implication to late Quaternary sea levels. Mar Geol 1:29–37

    Article  Google Scholar 

  • Guilcher A (1988) Coral reef geomorphology. John Wiley, New York, 228 pp

    Google Scholar 

  • Hays JD, Imnrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  Google Scholar 

  • Hoang CT, Taviani M (1991) Stratigraphic and tectonic implications of Uranium-series-dated coral reefs from uplifted Red Sea islands. Quat Res 35:264–273

    Article  Google Scholar 

  • Ibrahim A, Rouchy JM, Maurin A, Guelorget O, Perthuisot JP (1986) Mouvements halocinétiques récents dans le golfe de Suez: L’exemple de la péninsule de Guemsah. Bulletin de la Société Géologique de France Paris ser 8 2(1):177–183

    Google Scholar 

  • Issawi B, Francis M, El Hinnawi M, El Deftar T (1971) Geology of Safaga-Quseir coastal plain and of Mohamed Rahaba area. Annu Geol Surv Egypt 1:1–19

    Google Scholar 

  • Khalaf FI (1988) Quaternary calcareous hard rocks and the associated sediments in the intertidal and offshore zones of Kuwait. Mar Geol 80:1–27

    Article  Google Scholar 

  • Madkour HA (2009) Impacts and mitigation of anthropogenic factors on terrestrial Red Sea environment. Review article, National Institute of Oceanography and Fisheries, Red Sea Branch, 72 pp

    Google Scholar 

  • Madkour HA (2011) Impacts of human activities and natural inputs on heavy metal contents of many coral reef environments along the Egyptian Red Sea coast. Arab J Geosci 6:1739–1752. doi:10.1007/s12517-011-0482-5

    Article  Google Scholar 

  • Madkour HA, Ali MY (2008) Heavy metals in the benthic foraminifera from the coastal lagoons, Red Sea, Egypt: indicators of anthropogenic impact on environment (case study). Environ Geol 58:543–553. doi:10.1007/s00254-008-1529-0

    Article  Google Scholar 

  • Madkour HA, Dar MA (2007) The anthropogenic effluents of the human activities on the Red Sea coast at Hurghada Harbour (case study). Egyptian J Aquat Res 33(1):43–58

    Google Scholar 

  • Madkour HA, El-Taher A, Ahmed NA, Mohamed A, El-Erin MT (2012) Contamination of coastal sediment in El-Hamrawein Harbour, Red Sea, Egyptian. J Environ Sci Technol, International Standard Serial Number 1994–7887, Asian Network for Scientific Information. doi:10.3923/jest.2012

  • Manaa A (2011) Late Pleistocene raised coral reefs in the Eastern Red Sea—Rabigh, Saudi Arabia. Master of science research thesis, School of Earth and Environmental Science, University of Wollongong, 190 pp, http://ro.uow.edu.au/theses/3501

  • Mansour AM (1991) Interplay of beach and coastal dune environments around Safaga Bay, Red Sea, Egypt. Bull Fac Sci Assiut Univ 20(2-f):127–147

    Google Scholar 

  • Mansour AM (1993) Petrography of the raised coral reef and beach rocks of the Egyptian Red Sea coast. In: Bulletin of the Faculty of Science, Mansoura University, Egypt, Special Issue Symposium of the Quaternary and development in Egypt, pp 71–98

    Google Scholar 

  • Mansour AM (1999) Changes of sediment nature by environmental impacts of Sharm Abu Makhadeg area, Red Sea, Egypt. Sedimentology Egypt 7:25–36

    Google Scholar 

  • Mansour AM (2000a) Sedimentology of the Red Sea coast of Egypt. In: Soliman SM (ed) Book of the century, part 1, pp 15–44

    Google Scholar 

  • Mansour AM (2000b) Quaternary reef terraces and their relation to tectonic/eustatics of the Red Sea region, Egypt. Sedimentology Egypt 8:19–33

    Google Scholar 

  • Mansour AM, Nawar AH, Mohamed AW (2000a) Geochemistry of coastal marine sediments and their contaminant metals, Red Sea, Egypt: a legacy for the future and a tracer to modern sediment dynamics. Sedimentology Egypt 8:231–242

    Google Scholar 

  • Mansour AM, Nawar AH, Mohamed AW (2000b) Shallow marine sediments, Red Sea Egypt: restricted distribution of coral debris. Sedimentology Egypt 8:63–74

    Google Scholar 

  • Mansour AM, Nawar AH, Madkour HA (2005) Metals concentration of recent invertebrates along the Red Sea coast of Egypt: a tool for monitoring environmental hazards. Sedimentology Egypt 13:171–185

    Google Scholar 

  • Mansour AM, Nawar AH, Madkour HA (2011) Metal pollution in marine sediments of selected harbours and industrial areas along the Red Sea coast of Egypt. Annalen des Naturhistorischen Museums in Wien Serie A 113:225–244

    Google Scholar 

  • Mansour AM, Askalany MS, Madkour HA, Assran BS (2013) Assessment and comparison of heavy-metal concentrations in marine sediments in view of tourism activities in Hurghada area, northern Red Sea, Egypt. Egyptian J Aquat Res. doi: 10.1016/j.ejar.2013.07.004

  • Martinson DC, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quatern Res 27(1):1–29

    Article  Google Scholar 

  • Mesolella KJ, Matthews RK, Broecker WS, Thurber DL (1969) The astronomical theory of climatic change: Barbados data. J Geol 77:250–274

    Article  Google Scholar 

  • Milliman JD (1974) Marine carbonates. Springer, Berlin, 375 pp

    Google Scholar 

  • Montaggioni LF, Braithwaite CJR (2009) Quaternary coral reefs system: history, development processes and controlling factors. Elsevier, Oxford

    Google Scholar 

  • M’Rabet A, Purser BH, Soliman M (1989) Diagenese compare de reef coralliensactuels et quaternaires de la cote egyptienne de la mer Rouge. Geol Mediterr 16:5–39

    Google Scholar 

  • Orszag-Sperber F, Plaziat JC, Baltzer F, Purser BH (2001) Gypsum salina-coral reef relationships during the last interglacial (MIS 5e) on the Egyptian Red Sea coast: a Quaternary analogue for Neogene marginal evaporites. Sed Geol 140(1-2):65–85

    Article  Google Scholar 

  • PERSGA/GEF (2000) The status of coral reefs in Saudi Arabia. PERSGA, Jeddah

    Google Scholar 

  • PERSGA/GEF (2003) Coral reefs in the Red Sea and Gulf of Aden. Surveys 1990 to 2000 summary and recommendations. PERSGA technical series no. 7, 171 pp

    Google Scholar 

  • Piller WE, Mansour AM (1990) The northern Bay of Safaga (Red Sea, Egypt) An actuoupalaeontological approach. II sediment analysis and sedimentary facies. Beiträge zur Paläontologie Österreich Wien 16:1–102

    Google Scholar 

  • Pirazzoli PA, Radtke U, Hantoro WS, Jouannic C, Hoang CT, Causse C, Borel Best M (1993) A one million-year-long sequence of marine terraces on Sumba Island, Indonesia. Mar Geol 109:221–236

    Article  Google Scholar 

  • Plaziat J-C, Baltzer F, Choukri A, Conchon O, Freytet P, Orszag-Sperber F, Raguideau A, Reyss J-L (1998a) Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez (Egyptian coast): influences of rift tectonics, climatic changes and sea-level fluctuations. In: Purser BH, Bosence D (eds) Sedimentary and tectonic evolution of rift basins: the Red Sea-Gulf of Aden. Chapman and Hall, London, pp 537–573

    Chapter  Google Scholar 

  • Plaziat J-C, Reyss J-L, Choukri A, Orszag-Sperber F, Baltzer F, Purser BH (1998b) Mise en evidence, sur la cote recifaled’Egypte, d’une regression inter-rompant le plus haut niveau du dernier interglaciaire (5e): un nouvelindice de variations glacio-eustatiques a haute frequence au Pleistocene ? Bulletin de la Societegeologique de France, Paris 169(1):115–125

    Google Scholar 

  • Plaziat JC, Reyss JL, Choukri A, Cazala C (2008) Diagenetic rejuvenation of raised coral reefs and precision of dating. The contribution of the Red Sea reefs to the question of reliability of the Uranium-series datings of middle to late Pleistocene key reef-terraces of the world. Carnets de Geologie/Notebooks on Geology, Article 2008/04 (CG2008_A04)

    Google Scholar 

  • Potter EK, Esat TM, Schellmann G, Radtke U, Lambeck K, McCulloch MT (2004) Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet Sci Lett 225:191–204

    Article  Google Scholar 

  • Purser BH, Soliman M, M’Rabet A (1987) Carbonate, evaporite, siliciclastic transition in Quaternary rift sediments of the northwest Red Sea. Sed Geol 53:247–267

    Article  Google Scholar 

  • Reyss JL, Choukri A, Plaziat JC, Purser BH (1993) Datationsradiochimiques des recifscoralliens de la rive occidentale du Nord de la Mer Rouge, premieres implications stratigraphiques et tectoniques. Comptes Rendus de l’Academie des Sciences, Paris, series 2 Sciences de la Terre 317(4):487–492

    Google Scholar 

  • Scholle PA (1978) A color illustrated guide to carbonate rock constituents, textures, cements, and porosities. Am Assoc Pet Geol Mem 27:201

    Google Scholar 

  • Selley RC (1970) Ancient sedimentary environments. Cornell University Press, Ithaca, New York, 237 pp

    Google Scholar 

  • Sellwood BW, Netherwood RE (1984) Transformation of aragonite to calcite in marine gastropods. Can J Earth Sci 15:1861–1866

    Google Scholar 

  • Stein M, Wasserburg GJ, Aharon P, Chen JH, Zhu ZR, Bloom AL, Chappell J (1993) Thermal ionisation mass spectrometry U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochim Cosmochim Acta 57(11):2541–2554

    Article  Google Scholar 

  • Strasser A, Strohmenger C, Davaud E, Bach A (1992) Sequential evolution and diagenesis of Pleistocene coral reefs, South Sinia, Egypt. Sed Geol 78:59–79

    Article  Google Scholar 

  • Taviani M (1998) Post-miocene reef faunas of the Red Sea: glacio-eustatic controls. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics in Rift Basins: Red Sea—Gulf of Aden. Springer, Netherlands, pp 574–582

    Chapter  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Wiley, Oxford

    Book  Google Scholar 

  • UNEP (1997) Assessment of land-based sources and activities affecting the marine environment in the Red Sea and Gulf of Aden. UNEP Regional Seas Reports and Studies, No. 166

    Google Scholar 

  • Veeh HH, Giegengack R (1970) Uranium-series ages of corals from the Red Sea. Nature 226(5241):155–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas M. Mansour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mansour, A.M., Madkour, H.A. (2015). Raised Coral Reefs and Sediments in the Coastal Area of the Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_23

Download citation

Publish with us

Policies and ethics