Skip to main content
Book cover

The Red Sea pp 235–249Cite as

Hydrothermal Activity and Paleoenvironments of the Atlantis II Deep

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The Atlantis II Deep is a 65 km2 topographic depression located in the axial trough of the Red Sea at 2,000 m depth. The depression traps 17 km3 of hot and dense brines fed by hydrothermal fluids. This chapter reviews numerous data collected during the last 50 years. Chemical and isotopic data suggest that the processes that lead to the formation of the Atlantis II Deep brines are similar to those that produce open ridge black smoker fluids, but the recharging fluid is sea water in the case of sediment-free ridges, whereas it is sea water that has dissolved evaporites in the case of the Atlantis II Deep. The monitoring of temperature indicates that the heat flux was 0.54 × 109 W between 1965 and 1995. After 1995, the heat flux became 10 times lower. The substratum of the Atlantis II Deep consists of MORB-type basalts, which are covered with 0- to 30-m-thick metalliferous sediments. The solid fraction contains biogenic calcareous and/or siliceous components and silico-clastic detrital particles diluted by metalliferous sediment, which consists of metal oxides, sulphides, carbonates, sulphates, and silicates that precipitated from the hydrothermal fluids. The redox interface between the deepest brine layer and sea water is a major place of mineral precipitation. During glacial periods before the Holocene, the redox boundary was located above the brine–sea water boundary, so that hydrothermal metals spread over a large area of the Red Sea bottom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albarède F, Michard A, Minster JF, Michard G (1981) 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21° N. Earth Planet Sci Lett 55:229–236

    Article  Google Scholar 

  • Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Annu Rev Earth Planet Sci 35:717–746

    Article  Google Scholar 

  • Anschutz P, Blanc G (1993) L’histoire sédimentologique de la fosse Atlantis II (mer Rouge). Les apports de la micropaléontologie. Compte Rendus de l’Académie des Sci Paris série II 317:1303–1308

    Google Scholar 

  • Anschutz P, Blanc G (1995a) Chemical mass balances in metalliferous deposits from the Atlantis II Deep (Red Sea). Geochim Cosmochim Acta 59:4205–4218

    Article  Google Scholar 

  • Anschutz P, Blanc G (1995b) Geochemical dynamics of the Atlantis II Deep (Red Sea): silica behavior. Mar Geol 128:25–36

    Article  Google Scholar 

  • Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet Sci Lett 142:147–159

    Article  Google Scholar 

  • Anschutz P, Blanc G, Monnin C, Boulègue J (2000) Geochemical dynamics of the Atlantis II Deep (Red Sea). II: pore water composition of metalliferous sediments. Geochim Cosmochim Acta 64:3995–4006

    Article  Google Scholar 

  • Anschutz P, Blanc G, Stille P (1995) Origin of fluids and the evolution of the Atlantis II Deep hydrothermal system (Red Sea): Sr isotope study. Geochim Cosmochim Acta 59:4799–4808

    Article  Google Scholar 

  • Anschutz P, Turner JS, Blanc G (1998) The development of layering, fluxes through double-diffusive interfaces, and location of hydrothermal sources of brines in the Atlantis II Deep: Red Sea. J Geophys Res Oceans 103:27809–27819

    Article  Google Scholar 

  • Applin KR (1987) The diffusion of dissolved silica in dilute aqueous solution. Geochim Cosmochim Acta 51:2147–2151

    Article  Google Scholar 

  • Bäcker H (1976) Fazies und chemische Zusammensetzung rezenter Ausfällungen aus Mineralquellen im Roten Meer. Geol Jahrb D17:151–172

    Google Scholar 

  • Bäcker H, Richter H (1973) Die rezente hydrothermal-sedimentäre Lagestätte Atlantis II Tief im Roten Meer. Geol Rundsch 62:697–741

    Article  Google Scholar 

  • Badaut D, Blanc G, Decarreau A (1990) Variation des minéraux argileux ferrifères, en fonction du temps et de l’espace, dans les dépôts métallifères de la fosse Atlantis II en Mer Rouge. Compte Rendus de l’Académie des Sci Paris série II 310:1069–1075

    Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  Google Scholar 

  • Berggren WA, Boersma A (1969) Late Pleistocene and Holocene planktonic foraminifera from the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 282–298

    Chapter  Google Scholar 

  • Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311:188–210

    Article  Google Scholar 

  • Blanc G, Anschutz P (1995) New hydrographic situation in the Atlantis II Deep hydrothermal brine system. Geology 23:543–546

    Article  Google Scholar 

  • Blanc G, Anschutz P, Pierret MC (1998) Metalliferous sedimentation into the Atlantis II Deep: a geochemical insight. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 505–520

    Google Scholar 

  • Blanc G, Boulègue J, Badaut D, Stouff P (1986) Premiers résultats de la campagne océanographique Hydrotherm (Mai 85) du Marion-Dufresne sur la fosse Atlantis II (Mer Rouge). Compte Rendus de l’Académie des Sci Paris série II 302:175–180

    Google Scholar 

  • Blanc G, Boulègue J, Michard A (1995) Isotope compositions of the Red Sea hydrothermal end-member. Compte Rendus de l’Académie des Sci Paris série II 320:1187–1193

    Google Scholar 

  • Brewer PG, Desmore CD, Munns JW, Stanley RJ (1969) Hydrography of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 138–147

    Chapter  Google Scholar 

  • Bubnov VA, Fedorova VS, Shcherbinin AD (1977) New data on brines in the Red Sea. Oceanology 17:395–400

    Google Scholar 

  • Converse DR, Holland HD, Edmond JM (1984) Flow rates in the axial hot springs of the East Pacific Rise (21° N): implication of massive sulfide deposits. Earth Planet Sci Lett 69:159–175

    Article  Google Scholar 

  • Coulibaly A, Anschutz P, Blanc G, Malaizé B, Pujol C (2006) The effect of paleo-oceanographic changes on the sedimentary recording of hydrothermal activity in the Red Sea during the last 30,000 years. Mar Geol 226:51–64

    Article  Google Scholar 

  • Crowe SA, O’Neill AH, Katsev S, Hehanussa P, Haffner GD, Sundby B, Mucci A, Fowle DA (2008) The biogeochemistry of tropical lakes: a case study from Lake Matano, Indonesia. Limnol Oceanogr 53:319–331

    Article  Google Scholar 

  • Danielsson LG, Dyrssen D, Graneli A (1980) Chemical investigations of Atlantis II and Discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065

    Article  Google Scholar 

  • Davison W (1993) Iron and manganese in lakes. Earth-Sci Rev 34:119–163

    Article  Google Scholar 

  • Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, 600 pp

    Book  Google Scholar 

  • Dupré B, Blanc G, Boulègue J, Allègre CJ (1988) Metal remobilization at a spreading centre studied using lead isotopes. Nature 333:165–167

    Article  Google Scholar 

  • Eissen JP, Juteau T, Joron JL, Dupré B, Humler E, Al’ Mukhamedov A (1989) Petrology and geochemistry of basalts from the Red Sea axial rift at 18° North. J Petrol 30:791–839

    Article  Google Scholar 

  • Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379

    Article  Google Scholar 

  • Fenton M, Geiselhart S, Rohling EJ, Hemleben C (2000) Aplanktonic zones in the Red Sea. Mar Micropaleontol 40:277–294

    Article  Google Scholar 

  • German CR, Thurnherr AM, Knoery J, Charlou J-L, Jean-Baptiste P, Edmonds HN (2010) Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the rainbow hydrothermal field, 36° N MAR. Deep Sea Res I 57:518–527

    Article  Google Scholar 

  • German CR, Von Damm KL (2003) Hydrothermal processes. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 181–222

    Chapter  Google Scholar 

  • Greenberg JP, Moller N (1989) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C. Geochim Cosmochim Acta 53:2503–2518

    Article  Google Scholar 

  • Guney M, Nawab Z, Marhoun MA (1984) Atlantis-II-Deep’s metal reserves and their evaluation. In: Proceedings of the offshore technology conference Houston, paper 4780(3):33–44

    Google Scholar 

  • Hackett J, Bischoff JL (1973) New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ Geol 68:553–564

    Article  Google Scholar 

  • Hartmann M (1973) Untersuchung von suspendiertem Material in den Hydrothermal-Laugen des Atlantis II Tiefs. Geol Rundsch 62:742–754

    Article  Google Scholar 

  • Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965. Deep Sea Res 27A:161–171

    Article  Google Scholar 

  • Hartmann M (1985) Atlantis II deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea deep water. Mar Geol 64:157–177

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P (1998) Hydrographic structure of brine filled deeps in the Red Sea. Correction of the Atlantis II Deep temperatures. Mar Geol 144:331–332

    Article  Google Scholar 

  • Helgeson HC (1964) Complexing and hydrothermal ore deposition. Pergamon Press, New York, 128 pp

    Google Scholar 

  • Hemleben C, Meischner D, Zahn R, Almogi-Labin A, Erlenkeuser H, Hiller B (1996) Three hundred eighty thousand year long stable isotope faunal records from the Red Sea: influence of global sea level change on hydrography. Paleoceanography 11:147–156

    Article  Google Scholar 

  • Huppert HE (1971) On the stability of a series of double-diffusive layers. Deep-Sea Res 18:1005–1021

    Google Scholar 

  • Huppert HE, Linden PF (1979) On heating a stable salinity gradient from below. J Fluid Mech 95:431–464

    Article  Google Scholar 

  • Hyacinthe C, Anschutz P, Carbonel P, Jouanneau JM, Jorissen FJ (2001) Early diagenetic processes in the muddy sediments of the Bay of Biscay. Mar Geol 177:111–128

    Article  Google Scholar 

  • Kaplan IR, Sweeney RE, Nissenbaum A (1969) Sulfur isotope studies on Red Sea geothermal brines and sediments. In: Degens ET, Ross DA (eds) Hot Brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 474–498

    Chapter  Google Scholar 

  • Koski RA, German CR, Hein JR (2003) Fate of hydrothermal products from mid-ocean ridge hydrothermal systems: near-field to global perspectives. In: Halbach P, Tunnicliffe V, Hein J (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Berlin, pp 317–335

    Google Scholar 

  • Laurila TE, Hannington MD, Petersen S, Garbe-Schönberg D (2014) Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: evidence from rare earth element geochemistry. Geochim Cosmochim Acta 126:146–168

    Article  Google Scholar 

  • Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Locke S, Thunell RC (1988) Paleaceanographic record of the last glacial/interglacial cycle in the Red Sea and Gulf of Aden. Palaeogeogr Palaeoclimatol Palaeoecol 64:163–187

    Article  Google Scholar 

  • Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266:244–246

    Article  Google Scholar 

  • Luther GW III, Sundby B, Lewis BL, Brendel PJ, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways for dinitrogen formation. Geochim Cosmochim Acta 61:4043–4052

    Article  Google Scholar 

  • Macdonald KC, Becker FN, Spiess FN, Ballard RD (1980) Hydrothermal heat flux of the black smoker vents on the East Pacific Rise. Earth Planet Sci Lett 4:1–7

    Article  Google Scholar 

  • Maillard C (1974) Eaux intermediaires et formation d’eau profonde en Mer Rouge. In: L’oceanographie physique de la Mer Rouge, Centre National pour l’Exploitation des Oceans. Paris, pp 105–133

    Google Scholar 

  • McDougall TJ (1984) Convective processes caused by a dense, hot saline source flowing into a submarine depression from above. Deep-Sea Res 31:1287–1309

    Article  Google Scholar 

  • Miller AR (1964) Highest salinity in the World Ocean. Nature 203:590–591

    Article  Google Scholar 

  • Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarling PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30:341–359

    Article  Google Scholar 

  • Monin AS, Plakhin EA (1982) Stratification and space-time variability of Red sea hot brines. Deep-Sea Res 29:1271–1291

    Article  Google Scholar 

  • Monnin C, Ramboz C (1996) The anhydrite saturation index of the Red Sea ponded brines and sediment pore waters of the Red Sea deeps. Chem Geol 127:141–159

    Article  Google Scholar 

  • Munns RG, Stanley RJ, Densmore CD (1967) Hydrographic observations of the Red Sea brines. Nature 214:1215–1217

    Article  Google Scholar 

  • Myers CR, Nealson KH (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim Cosmochim Acta 52:2727–2732

    Article  Google Scholar 

  • Oudin E, Thisse Y, Ramboz C (1984) Fluid inclusion and mineralogical evidence for high temperature saline hydrothermal circulation in the Red Sea metalliferous sediments: preliminary results. Mar Min 5:3–31

    Google Scholar 

  • Pautot G (1983) Les fosses de la Mer Rouge: approche géomorphologique d’un stade initial d’ouverture océanique réalisée à l’aide du Seabeam. Oceanol Acta 6:235–244

    Google Scholar 

  • Pierret MC, Clauer N, Bosch D, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, d18O, dD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochim Acta 65:1259–1275

    Article  Google Scholar 

  • Pitzer KS (1979) Theory: ion interaction approach. In: Pytckowicz RM (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, pp 157–208

    Google Scholar 

  • Postma D (1985) Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C. Geochim Cosmochim Acta 49:1023–1033

    Article  Google Scholar 

  • Pottorf RJ, Barnes HL (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223

    Google Scholar 

  • Reiss Z, Luz B, Almogi-Labin A, Halicz E, Winter A, Wolf M, Ross DA (1980) Late quaternary paleoceanography of the Gulf of Aqaba (Elat), Red Sea. Quatern Res 14:294–308

    Article  Google Scholar 

  • Rona PA (2008) The changing vision of marine minerals. Ore Geol Rev 33:618–666

    Article  Google Scholar 

  • Ross DA (1972) Red Sea hot brine area-revised. Science 175:1455–1456

    Article  Google Scholar 

  • Rouxel O, Resnais Y, Callac N, Anschutz P (2012) Deep sea metalliferous deposits as modern analogues for ancient marine environments. Mineral Mag 76:2302

    Google Scholar 

  • Schmidt M, Botz R, Faber E, Schmitt M, Poggenburg J, Garbe-Schonberg D, Stoffers P (2003) High-resolution methane profiles across anoxic brine-sea-water boundaries in the Atlantis-II, Discovery, and Kebrit Deeps (Red Sea). Chem Geol 200:359–375

    Article  Google Scholar 

  • Schoell M, Hartmann M (1973) Detailed temperature structure of the hot brines in the Atlantis II Deep area (Red Sea). Mar Geol 14:1–14

    Article  Google Scholar 

  • Schoell M, Hartmann M (1978) Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274:784–785

    Article  Google Scholar 

  • Seeberg-Elverfeldt IA, Lange CB, Arz HW, Pätzold J, Pike J (2004) The significance of diatoms in the formation of laminated sediments of the Shaban Deep, Northern Red Sea. Mar Geol 209:279–301

    Article  Google Scholar 

  • Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43:468–525

    Google Scholar 

  • Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition and accumulation rates of the Red Sea geothermal deposits. Econ Geol 75:445–459

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  Google Scholar 

  • Sofianos SS, Johns WE (2002) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1, exchange between the Red Sea and the Indian Ocean. J Geophys Res 107:C11. doi:10.1029/2001JC001184

    Google Scholar 

  • Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res 112:C6. doi:10.1029/2006JC003886

    Google Scholar 

  • Spiess FN, Ken CM, Atwater T, Ballard R, Carranza A, Cordoba D, Cox C, Diaz Garcia VM, Francheteau J, Guerrero J, Hawkins J, Haymon R, Hessler R, Juteau T, Kastner M, Larson R, Luyendyk B, Macdongall JD, Miller S, Normark W, Orcutt J, Rangin C (1980) East Pacific Rise: hot springs and geophysical experiments. Science 207:1421–1433

    Article  Google Scholar 

  • Stoffers P et al (1998) Hydrography, hydrothermalism and paleoceanography in the Red Sea. Berichte-Reports aus dem Geologisch—Paläontologischen Institut der Universität Kiel, Deutschland 88, 107 pp

    Google Scholar 

  • Swift SA, Bower AS, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and discovery hot brine pools, Red Sea. Deep-Sea Res I 64:118–128

    Article  Google Scholar 

  • Taviani M (1998) Axial sedimentation of the Red Sea transitional region (22°–25°N): pelagic, gravity flow and sapropel deposition during the late quaternary. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 467–478

    Google Scholar 

  • Turner JS (1969) A physical interpretation of the observations of the hot brine layers in the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 164–173

    Chapter  Google Scholar 

  • Turner JS (1973) Buoyancy Effects in Fluids. Cambridge University Press, Cambridge, 367 pp

    Book  Google Scholar 

  • Turner JS (1985) Multicomponent convection. Annu Rev Fluid Mech 17:11–44

    Article  Google Scholar 

  • Volker F, Mc Culloch MT, Altherr R (1993) Submarine basalts from the Red Sea: New Pb, Sr and Nd isotopic data. Geophys Res Lett 20:927–930

    Article  Google Scholar 

  • Von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu Rev Earth Planet Sci 18:173–204

    Article  Google Scholar 

  • Weikert H (1982) The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II Deep, central Red Sea. Mar Ecol Prog Ser 8:129–143

    Article  Google Scholar 

  • Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth and Planet Sci Lett 184:671–683

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediments, Atlantis II Deep, Red Sea. Econ Geol 78:57–72

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1986) Isotopic variations on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim Cosmochim Acta 50:2205–2214

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank Mark Hannington, Tea Laurila, Susan Humphris, and Pat Shanks for their critical comments in order to improve the manuscript. Louiesito Abalos is thanked for helping me out in producing the figures. I thank my colleagues from the laboratory EPOC, particularly Gérard Blanc for all the work we have done together on the Atlantis II Deep.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Anschutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anschutz, P. (2015). Hydrothermal Activity and Paleoenvironments of the Atlantis II Deep. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_14

Download citation

Publish with us

Policies and ethics