Skip to main content
Book cover

The Red Sea pp 219–233Cite as

Geochemical Classification of Brine-Filled Red Sea Deeps

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The major geochemical characteristics of Red Sea brine are summarized for 11 brine-filled deeps located along the central graben axis between 19°N and 27°N. The major element composition of the different brine pools is mainly controlled by variable mixing situations of halite-saturated solution (evaporite dissolution) with Red Sea deep water. The brine chemistry is also influenced by hydrothermal water/rock interaction, whereas magmatic and sedimentary rock reactions can be distinguished by boron, lithium, and magnesium/calcium chemistry. Moreover, hydrocarbon chemistry (concentrations and δ13C data) of brine indicates variable injection of light hydrocarbons from organic source rocks and strong secondary (bacterial or thermogenic) degradation processes. A simple statistical cluster analysis approach was selected to look for similarities in brine chemistry and to classify the various brine pools, as the measured chemical brine compositions show remarkably strong concentration variations for some elements. The cluster analysis indicates two main classes of brine. Type I brine chemistry (Oceanographer and Kebrit Deeps) is controlled by evaporite dissolution and contributions from sediment alteration. The Type II brine (Suakin, Port Sudan, Erba, Albatross, Discovery, Atlantis II, Nereus, Shaban, and Conrad Deeps) is influenced by variable contributions from volcanic/magmatic rock alteration. The chemical brine classification can be correlated with the sedimentary and tectonic setting of the related depressions. Type I brine-filled deeps are located slightly off-axis from the central Red Sea graben. A typical “collapse structure formation” which has been defined for the Kebrit Deep by evaluating seismic and geomorphological data probably corresponds to our Type I brine. Type II brine located in depressions in the northern Red Sea (i.e., Conrad and Shaban Deeps) could be correlated to “volcanic intrusion-/extrusion-related” deep formation. The chemical indications for hydrothermal influence on Conrad and Shaban Deep brine can be related to brines from the multi-deeps region in the central Red Sea, where volcanic/magmatic fluid/rock interaction is most obvious. The strongest hydrothermal influence is observed in Atlantis II brine (central multi-deeps region), which is also the hottest Red Sea brine body in 2011 (~68.2 °C).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet Sci Lett 142:147–159

    Article  Google Scholar 

  • Anschutz P, Blanc G, Chatin F, Geiller M, Pierret MC (1999) Hydrographic change during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res 46:1779–1792

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3(4):416–433

    Article  Google Scholar 

  • Baker ET, Hey RN, Lupton JE, Resing JA, Feely RA, Gharib JJ, Massoth GJ, Sansone FJ, Kleinrock MC, Martinez F, Naar DF, Rodrigo C, Bohnenstiehl D, Pardee D (2002) Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5°–32.3° S. J Geophys Res 107(B7). http://dx.doi.org/10.1029/2001JB000651

  • Barrett TJ, Anderson GM (1988) The solubility of sphalerite and galena in 1–5 m NaCl solutions to 300 °C. Geochim Cosmochim Acta 52:813–820

    Article  Google Scholar 

  • Bertram C, Krätschell A, O’Brien K, Brückmann W, Proelss A, Rehdanz C (2011) Metalliferous sediments in the Atlantis II Deep—assessing the geological and economic resource potential and legal constraints. Resour Policy 36(4):315–329

    Article  Google Scholar 

  • Blum N, Puchelt H (1991) Sedimentary hosted poly-metallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner Deposita 26:217–227

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Bonatti E, Bortoluzzi G, Calafato A, Cipriani A, Ferrante V, Ligi M, Lopez Correa M, Redini F, Barabino G, Carminati E, Mitchell N, Sichler B, Schmidt M, Schmitt M, Rasul N, Al Nomani S, Bahareth F, Khalil S, Farawati R, Gitto D, Raspagliosi M (2005) Geophysical, geological and oceanographic surveys in the Northern Red Sea. Report on the morphobathymetric, magnetometric, oceanographic, coring and dredging investigations during cruise RS05 aboard R/V Urania. ISMAR-CNR Cataloging-In-Publication data: ISMAR Bologna technical report no. 94, 34 pp

    Google Scholar 

  • Botz R, Schmidt M, Wehner H, Hufnagel H, Stoffers P (2007) Organic-rich sediments in brine-filled Shaban- and Kebrit Deeps, Northern Red Sea. Chem Geol 244:520–553

    Article  Google Scholar 

  • Brewer PG, Spencer D (1969) A note on the chemical composition of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 174–179

    Chapter  Google Scholar 

  • Brooks RR, Kaplan IR, Peterson MNA (1969) Trace element composition of the Red Sea geothermal brine and interstitial water. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 180–203

    Chapter  Google Scholar 

  • Burke RA, Brooks JM, Sackett WM (1981) Light hydrocarbons in Red Sea brines and sediments. Geochim Cosmochim Acta 45:627–634

    Article  Google Scholar 

  • Craig H (1969) Geochemistry and origin of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 208–242

    Chapter  Google Scholar 

  • Danielsson LG, Dyrssen D, Graneli A (1980) Chemical investigations of Atlantis-II and Discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065

    Article  Google Scholar 

  • Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer, New York, 600 pp

    Book  Google Scholar 

  • Ehrhardt LA (2005) Seismic and hydroacoustic studies of surficial sediment tectonics along the northern Red Sea Rift and the Dead Sea Transform fault. GEO-LEO e-docs/Geophysik, 126 pp

    Google Scholar 

  • Ehrhardt A, Hübscher C, Gajewski D (2005) Conrad Deep, Northern Red Sea: development of an early stage ocean deep within the axial depression. Tectonophysics 411:19–40

    Article  Google Scholar 

  • El-Anbaawy MIH, Al-Aawah MAH, Al-Thour KA, Tucker ME (1992) Miocene evaporites of the Red Sea rift, Yemen Republic: sedimentology of the Salif halite. Sed Geol 81:61–71

    Article  Google Scholar 

  • Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29(1–3):363–379

    Article  Google Scholar 

  • Garbe-Schönberg CD, Scholten J, Stoffers P, Moammar M (1999) Trace element chemistry of brines and brine-interfaces in the Atlantis-II, Chain, and Discovery Deep in the Red Sea. In: Second symposium on Red Sea marine environment, Jeddah. King Abdulaziz University, Saudi Arabia

    Google Scholar 

  • Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J Int 51(1):245–251

    Article  Google Scholar 

  • Gurvich EG (2006) Metalliferous sediments of the World Ocean fundamental theory of Deep-Sea hydrothermal sedimentation. Springer, Heidelberg, 416 pp

    Google Scholar 

  • Haffert L, Haeckel M, Liebetrau V, Berndt C, Hensen C, Nuzzo M, Reitz A, Scholz F, Schönfeld J, Perez-Garcia C, Weise SM (2013) Fluid evolution and authigenic mineral paragenesis related to salt diapirism—the Mercator mud volcano in the Gulf of Cadiz. Geochim Cosmochim Acta 106:261–286

    Article  Google Scholar 

  • Hardie LA (1991) On the significance of evaporites. Annu Rev Earth Planet Sci 19:131–168

    Article  Google Scholar 

  • Hartmann M (1973) Untersuchungen von suspendiertem Material in den Hydrothermallaugen des Atlantis-II-Tiefs. Geol Rundsch 62:742–754

    Article  Google Scholar 

  • Hartmann M (1985) Atlantis-II Deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea Deep Water. Mar Geol 64:157–177

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998a) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P (1998b) Hydrographic structure of brine-filled deeps in the Red Sea: correction of Atlantis II Deep temperatures. Mar Geol 144:331–332

    Article  Google Scholar 

  • Hekinian R, Cheminee JL, Stoffers P (2004) Oceanic hotspots: intraplate submarine magmatism and tectonism. Springer, Berlin, 480 pp

    Book  Google Scholar 

  • Hovland M, Kuznetsova T, Rueslåtten H, Kvamme B, Johnsen HK, Fladmark GE, Hebach A (2006) Sub-surface precipitation of salts in supercritical seawater. Basin Res 18:221–230

    Article  Google Scholar 

  • Krouse HR, Viau CA, Eliuk LS, Ueda A, Halas S (1988) Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333:415–419

    Article  Google Scholar 

  • Krupp RE (2005) Formation and chemical evolution of magnesium chloride brines by evaporite dissolution—implications for evaporite geochemistry. Geochim Cosmochim Acta 69(17):4283–4299

    Article  Google Scholar 

  • Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarlin PF, Pocklington R, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 30:341–359

    Article  Google Scholar 

  • Monnin C, Ramboz C (1996) The anhydrite saturation index of the ponded brines and sediment pore waters of the Red Sea deeps. Chem Geol 127:141–159

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497 pp. Available only at http://pubs.usgs.gov/tm/06/a43/

  • Pätzold J, Halbach PE, Hempel G, Weikert H (2000) Östliches Mittelmeer—Nördliches Rotes Meer 1999, Cruise No. 44, 22 January–16 May 1999. METEOR-Berichte, Universität Hamburg, 00-3, 240 pp

    Google Scholar 

  • Pätzold J, Bohrmann G, Hübscher C (2003). Black Sea—Mediterranean—Red Sea, Cruise No. 52, January 2–March 27, 2002. METEOR-Berichte, Universität Hamburg, 03-2, 178 pp

    Google Scholar 

  • Pierret MC, Bosch D, Clauer N, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochim Acta 65:1259–1275

    Article  Google Scholar 

  • Reeves EP, Seewald JS, Saccocia P, Bach W, Craddock PR, Shanks WC, Sylva SP, Walsh E, Pichler T, Rosner M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75(4):1088–1123

    Article  Google Scholar 

  • Schenk CJ, Charpentier RR, Klett TR, Brownfield ME, Kirschbaum MA, Pitman JK, Cook TA, Tennyson ME (2010) Assessment of undiscovered oil and gas resources of the Red Sea Basin Province. U.S. Geological Survey Fact Sheet 2010-3119, 2 pp

    Google Scholar 

  • Schmidt M, Botz R, Faber E, Schmitt M, Poggenburg J, Garbe-Schönberg D, Stoffers P (2003) High-resolution methane profiles across anoxic brine-seawater boundaries in the Atlantis-II, Discovery, and Kebrit deeps (Red Sea). Chem Geol 200:359–376

    Article  Google Scholar 

  • Schmidt M, Botz R, Aeschbach‐Hertig W, Bayer R, Schmitt M, Boettcher M, Stoffers P, Bonatti E (2006) Biogeochemistry of brines in the Northern Red Sea. EGU General Assembly 2006, Vienna. Geophysical research abstracts, vol 8. EGU06‐A‐04400

    Google Scholar 

  • Schmidt M, Devey C, Eisenhauer A (2011) FS Poseidon Fahrtbericht/Cruise Report P408—the Jeddah Transect; Jeddah—Jeddah, Saudi Arabia, 13.01.-02.03.2011 IFM-GEOMAR report 46. IFM-GEOMAR, Kiel, 80 pp

    Google Scholar 

  • Schmidt M, Al-Farawati R, Al-Aidaroos A, Kürten B (2013) RV PELAGIA Fahrtbericht/Cruise Report 64PE350/64PE351—JEDDAH-TRANSECT; 08.03.-05.04.2012 Jeddah-Jeddah, 06.04-22.04.2012 Jeddah-Duba. GEOMAR Report, N. Ser. 005, GEOMAR Helmholtz Centre for Ocean Research Kiel, 154 pp. doi:10.3289/GEOMAR_REP_NS_5_2013

  • Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438

    Article  Google Scholar 

  • Scholten JC, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. In: Cronan DS (ed) Handbook of Marine Mineral Deposits. CRC Press, Boca Raton, pp 369–395

    Google Scholar 

  • Seyfried WE Jr (1987) Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annu Rev Earth Planet Sci 15:317–335

    Article  Google Scholar 

  • Simoneit BRT, Grimalt JO, Hayes JM, Hartman H (1987) Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II deep, Red Sea. Geochim Cosmochim Acta 51(879):894

    Google Scholar 

  • Stoffers P, Kühn R (1974) Red Sea evaporites: a petrographic and geochemical study. In: Whitmarsh RB, Weser OE, Ross DA et al (eds) Initial reports of the Deep Sea Drilling Project, vol 23. U.S. Government Printing Office, Washington DC, pp 821–847

    Google Scholar 

  • Swift SA, Bower AS, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep-Sea Res I 64:118–128

    Article  Google Scholar 

  • Tooms JS, Holmes R, Horowitz A (1973) Confirmation of Ostapoff’s fourth brine hole, Red Sea. Nat Phys Sci 241:161–162

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. AGU monograph series no. 91, American Geophysical Union, Washington DC, pp 222–247

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49(11):2197–2220

    Article  Google Scholar 

  • Wallmann K, Suess E, Westbrook GH, Winckler G, Cita MB, and the MEDRIFF consortium (1997) Salty brines on the Mediterranean seafloor. Nature 387:31–32

    Google Scholar 

  • Wang Y, Yang J, Lee OO, Dash S, Lau SCK, Al-Suwailem A, Wong TYH, Danchin A, Qian PY (2011) Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. Int Soc Microb Ecol J 5:1652–1659

    Google Scholar 

  • Weber WW, Gurskii YN (1982) Maltene formation in present sediments of the Kebrit brine depressions of the Red Sea. Geologiya Nefti Gaza 1:29–33

    Google Scholar 

  • Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments: isotope evidence. Org Geochem 10:759–768

    Article  Google Scholar 

  • Winckler G, Kipfer R, Aeschbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea Brines—new indication from noble gas data. Geochim Cosmochim Acta 64:1567–1575

    Article  Google Scholar 

  • Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rübel AP, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett 184:671–683

    Article  Google Scholar 

  • You CF, Gieskes JM (2001) Hydrothermal alteration of hemi-pelagic sediments: experimental evaluation of geochemical processes in shallow subduction zones. Appl Geochem 16:1055–1066

    Article  Google Scholar 

Download references

Acknowledgment

Multilateral scientific, logistic, and political efforts during the last decade made it possible to collect this comprehensive geochemical data set for brine in the Red Sea. However, the main analytical work and data evaluation have been conducted during the last 3 years within the Jeddah Transect Project (www.jeddah-transect.org). The collaboration for the Jeddah Transect Project between King Abdulaziz University (KAU) Jeddah, Saudi Arabia, and the Helmholtz Center for Ocean Research GEOMAR, Kiel, was funded by King Abdulaziz University, under Grant no. T-065/430-DSR. The authors therefore acknowledge with thanks KAU technical and financial support. We also thank reviewers E. Faber and J. Scholten for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, M., Al-Farawati, R., Botz, R. (2015). Geochemical Classification of Brine-Filled Red Sea Deeps. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_13

Download citation

Publish with us

Policies and ethics