Skip to main content

Salt Flows in the Central Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The central Red Sea is a nascent oceanic basin. Miocene evaporites, kilometers in thickness, were deposited during its continental rifting phase and early seafloor spreading. With further seafloor spreading, increasing dissolution due to increasing hydrothermal circulation as well as normal fault movements removed lateral constraint of the evaporites at the walls of the axial rift valley. Because halite is a ductile material that forms a large part of the evaporite sequence, the evaporites started to move downslope, passively carrying their hemipelagic sediment cover. Today, flowlike features comprising Miocene evaporites are situated on the top of younger magnetic seafloor spreading anomalies. Six salt flows, most showing rounded fronts in plan view, with heights of several hundred meters and widths between 3 and 10 km, are identified by high-resolution bathymetry and DSDP core material around Thetis Deep and Atlantis II Deep, and between Atlantis II Deep and Port Sudan Deep. The relief of the underlying volcanic basement likely controls the positions of individual salt flow lobes. On the flow surfaces, along-slope and downslope ridge and trough morphologies parallel to the local seafloor gradient have developed, presumably due to extension of the hemiplegic sediment cover or strike-slip movement within the evaporites. A few places of irregular seafloor topography are observed close to the flow fronts, interpreted to be the result of dissolution of Miocene evaporites, which contributes to the formation of brines in several of the deeps. Based on the vertical relief of the flow lobes, deformation is taking place in the upper part of the evaporite sequence. Considering a salt flow at Atlantis II Deep in more detail, strain rates due to dislocation creep and pressure solution creep were estimated to be 10−14 1/s and 10−10 1/s, respectively, using given assumptions of grain size and deforming layer thickness. The latter strain rate, comparable to strain rates observed for onshore salt flows in Iran, results in flow speeds of several mm/year for the offshore salt flows in certain locations. Thus, salt flow movements can potentially keep up with Arabia–Nubia tectonic half-spreading rates reported for large parts of the Red Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anschutz P, Blanc G (1995) Origin of fluids and the evolution of Atlantis II Deep hydrothermal system, Red Sea: strontium isotope study. Geochim Cosmochim Acta 59(23):4799–4808

    Article  Google Scholar 

  • Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. Am Assoc Pet Geol Bull 14(1):1–24

    Google Scholar 

  • Augustin N, Colin WD, van der Zwanm F, Feldens P, Bantan R, Kwasnitschka T (2014) The rifting to spreading transition in the Red Sea. Earth Planet Sci Lett 395:217–230

    Google Scholar 

  • Bindschadler R (1998) Monitoring ice sheet behavior from space. Rev Geophys 36(1):79–104

    Article  Google Scholar 

  • Bjørlykke K (2010) Petroleum geoscience: from sedimentary environments to rock physics. Springer, Berlin

    Book  Google Scholar 

  • Brückmann W (1989) Typische Kompaktionsabläufe mariner Sedimente und ihre Modifikation in einem rezenten Akkretionskeil (Barbados Ridge). Tübinger Geowissenschaftliche Arbeiten, Reihe A Nr. 5, 135 pp

    Google Scholar 

  • Burrus J (1998) Overpressure models for clastic rocks, their relation to hydrocarbon expulsion: a critical reevaluation. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environments. American Association of Petroleum Geologists Memoir, pp 35–63

    Google Scholar 

  • Campbell I, Jacobel R, Welch B, Petterson R (2008) The evolution of surface flow stripes and stratigraphic folds within Kamb ice stream: why don’t they match? J Glaciol 54(186):421–427

    Article  Google Scholar 

  • Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135(2):313–328

    Article  Google Scholar 

  • Cochran JR (1983) A model for the development of the Red Sea. Am Assoc Pet Geol Bull 67:41–69

    Google Scholar 

  • Coleman RG (1993) Geologic evolution of the Red Sea. Oxford Monogr Geol Geophys 24, 186 pp

    Google Scholar 

  • De Meer S, Drury MR, De Bresser JHP, Pennock GM (2002) Current issues and new developments in deformation mechanisms, rheology and tectonics, vol 200. Geological Society, London, pp 1–27 (Special Publications)

    Google Scholar 

  • Dell’Angelo L, Olgaard DL (1995) Experimental deformation of fine-grained anhydrite: evidence for dislocation and diffusion creep. J Geophys Res 100(B8):15425–15440

    Article  Google Scholar 

  • Einsele G (1989) In-situ water contents, liquid limits, and submarine mass flows due to a high liquefaction potential of slope sediment (results from DSDP and subaerial counterparts). Geol Rundsch 78:821–840

    Article  Google Scholar 

  • Fletcher CF, Hudec MR, Watson IA (1995) Salt glacier and composite sediment-salt glacier models for the emplacement and early burial of allochthonous salt sheets. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics a global perspective. American Association of Petroleum Geologists Memoir, pp 77–108

    Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44(1):1–13

    Article  Google Scholar 

  • Girdler RW, Whitmarsh RB (1974) Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. In: Whitmarsh RB, Weser OE, Ross DA (eds) Initial reports of the Deep Sea Drilling Project, vol 23. US Government Printing Office, Washington, pp 913–921

    Google Scholar 

  • Girdler RW, Erickson AJ, Von Herzen R (1974) Downhole temperature and shipboard thermal conductivity measurements aboard d/v Glomar Challenger in the Red Sea. In: Whitmarsh RB, Weser OE, Ross DA (eds) Initial reports of the Deep Sea Drilling Project, vol 23. US Government Printing Office, Washington, pp 879–886

    Google Scholar 

  • Glasser NF, Gudmundsson GH (2012) Longitudinal surface structures (flowstripes) on Antarctic glaciers. Cryosphere 6:383–391

    Article  Google Scholar 

  • Goulty NR (1998) Relationships between porosity and effective stress in shales. First Break 16(12):413–419

    Article  Google Scholar 

  • Green HW (1984) Pressure solution creep: some causes and mechanisms. J Geophys Res 89(B6):4313–4318

    Article  Google Scholar 

  • Gudmundsson GH, Raymond CF, Bindschadler R (1998) The origin and longevity of flow stripes on Antarctic ice streams. Ann Glaciol 27:145–152

    Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structures of brine-filled deeps in the Red Sea—results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  Google Scholar 

  • Heidelbach F, Stretton IC, Kunze K (2001) Texture development of polycrystalline anhydrite experimentally deformed in torsion. Int J Earth Sci (Geol Rundsch) 90:118–126

    Article  Google Scholar 

  • Hudec MR, Jackson MPA (2006) Advance of allochthonous salt sheets in passive margins and orogens. Am Assoc Pet Geol Bull 90:1535–1564

    Google Scholar 

  • Hudec MR, Jackson MPA (2007) Terra infirma: understanding salt tectonics. Earth-Sci Rev 82:1–28

    Article  Google Scholar 

  • Izzeldin AY (1987) Seismic, gravity and magnetic surveys in the central part of the Red Sea: their interpretation and implications for the structure and evolution of the Red Sea. Tectonophysics 143:269–306

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates, and dynamics of salt structures. Geol Soc Am Bull 97(3):305–323

    Article  Google Scholar 

  • Krastel S, Wynn RB, Georgiopoulou A, Geersen J, Heinrich R, Meyer M, Schwenk T (2012) Large-scale mass wasting on the northwest African continental margin: some general implications for mass wasting on passive continental margins. Adv Nat Technol Hazards Res 31:189–199

    Google Scholar 

  • Lees GM (1927) Salzgletscher in Persien. Mitteilungen der deutschen Gesellschaft (Wien) 20:29–34

    Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Tontini FC, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13(8):1–29

    Article  Google Scholar 

  • Magara K (1980) Comparison of porosity-depth relationships of shale and sandstone. J Pet Geol 3:175–185

    Article  Google Scholar 

  • Manheim FT, Dwight L, Belastock RA (1974) Porosity, density, grain density, and related physical properties of sediments from the Red Sea drill cores. In: Whitmarsh RB, Weser OE, Ross DA (eds) Initial reports of the Deep Sea Drilling Project, vol 23. US Government Printing Office, Washington, pp 887–907

    Google Scholar 

  • Mankinen EA, Dalrymple GB (1979) Revised geomagnetic polarity time scale for the interval 0-5 m.y. B.P. J Geophys Res 84(B2):615–626

    Article  Google Scholar 

  • Meade RH (1966) Factors influencing the early stages of the compaction of clays and sands – review. SEPM J Sediment Res 36(4):1085–1101

    Google Scholar 

  • Micaleff A, Masson DG, Berndt C, Stow DAV (2007) Morphology and mechanics of submarine spreading: a case study from the Storegga Slide. J Geophys Res 112(F03023):1–12

    Google Scholar 

  • Mitchell DJW, Allen RB, Salama W, Abouzakm A (1992) Tectonostratigraphic framework and hydrocarbon potential of the Red Sea. J Pet Geol 15(2):187–210

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122(5–6):701–713

    Article  Google Scholar 

  • Mohr M, Warren JK, Kukla PA, Urai JL, Irmen A (2007) Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 35(11):963–966

    Article  Google Scholar 

  • Pautot G, Auzende JM, LePichon X (1966) Continuous deep salt layer along North Atlantic margins related to early phase of rifting. Nature 227:351–354

    Article  Google Scholar 

  • Pilcher RS, Blumstein RD (2007) Brine volume and salt dissolution rates in Orca Basin, northeast Gulf of Mexico. Am Assoc Pet Geol Bull 91:823–833

    Google Scholar 

  • Ross JV, Bauer SJ (1992) Semi-brittle deformation of anhydrite-halite shear zones simulating mylonite formation. Tectonophysics 213:303–320

    Article  Google Scholar 

  • Ross DA, Schlee J (1973) Shallow structure and geologic development of the southern Red Sea. Geol Soc Am Bull 84(12):3827–3848

    Article  Google Scholar 

  • Ross JV, Bauer SJ, Hansen FD (1987) Textural evolution of synthetic anhydrite-halite mylonites. Tectonophysics 140:307–326

    Article  Google Scholar 

  • Schléder Z, Urai JL (2007) Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J Struct Geol 29(2):241–255

    Article  Google Scholar 

  • Schléder Z, Urai JL, Nollet S, Hilgers C (2008) Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). Int J Earth Sci (Geol Rundsch) 97:1045–1056

    Article  Google Scholar 

  • Schmidt M, Devey C, Eisenhauer A (eds) (2011) FS Poseidon Fahrtbericht/Cruise Report P408—The Jeddah Transect; Jeddah – Jeddah, Saudi Arabia, 13.01.-02.03.2011 IFM-GEOMAR Report 46

    Google Scholar 

  • Stoffers P, Kühn R (1974) Red sea evaporites: a petrographic and geochemical study. In: Whitmarsh RB, Weser OE, Ross DA (eds) Initial reports of the Deep Sea Drilling Project, vol 23. US Government Printing Office, Washington, pp 821–847

    Google Scholar 

  • Talbot CJ (1993) Spreading of salt structures in the Gulf of Mexico. Tectonophysics 228:151–166

    Article  Google Scholar 

  • Talbot CJ, Pohjola V (2009) Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth Sci Rev 97:155–183

    Article  Google Scholar 

  • Talbot CJ, Rogers EA (1980) Seasonal movements in a salt glacier in Iran. Science 208:395–397

    Article  Google Scholar 

  • Talbot CJ, Medvedev S, Alavi M, Shahrivar H, Heidari E (2000) Salt extrusion rates at Kuh-e-Jahani, Iran: June 1994 to November 1997, vol 174. Geological Society, London (Special Publications), pp 93–11

    Google Scholar 

  • Tramontini C, Davies D (1969) A seismic refraction survey in the Red Sea. Geophys J Int 17(2):225–241

    Article  Google Scholar 

  • Twiss RJ, Moores ME (1992) Structural geology. Palgrave Macmillan, Basingstoke

    Google Scholar 

  • Urai JL, Spiers CJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324:554–557

    Google Scholar 

  • Urai J, Schléder Z, Spiers C (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin system. Springer, Berlin, pp 277–290

    Google Scholar 

  • Völker D, Scholz F, Geersen J (2011) Analysis of submarine landsliding in the rupture area of the 27 February 2010 Maule earthquake, Central Chile. Mar Geol 288:79–89

    Article  Google Scholar 

  • Wenkert DD (1979) The flow of salt glaciers. Geophys Res Lett 6(6):523

    Article  Google Scholar 

  • Wetzel A (1986) Sedimentphysikalische Eigenschaften als Indikatoren für Ablagerung, Diagenese und Verwitterung von Peliten. Geowiss Fakultät Univ Tübingen, 135 pp

    Google Scholar 

  • Whitmarsh RB, Weser OE, Ross DA (eds) (1974) Initial reports of the Deep Sea Drilling Project, vol 23. US Government Printing Office, Washington

    Google Scholar 

  • Zulauf G, Zulauf J, Bornemann O, Kihm N, Peinl M, Zanella F (2009) Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction. J Struct Geol 31:460–474

    Article  Google Scholar 

Download references

Acknowledgement

We thank the reviewers L.M. Pinheiro and J. Gardner for constructive and helpful reviews. This chapter is the result of the Jeddah Transect Project, a collaboration between King Abdulaziz University and GEOMAR Helmholtz-Center for Ocean Research that was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under Grant No. T-065/430. The authors, therefore, acknowledge with thanks KAU technical and financial support. We wish to thank M. Ligi and E. Bonatti who gave us access to multibeam data of Thetis Deep. Nico Augustin and Rashad Bantan collected and processed large parts of the remaining multibeam data. Mark Schmidt made ship time available for additional salt flow-related surveys and contributed with valuable comments. Further, we wish to thank masters and crews of FS Poseidon and FS Pelagia for their invaluable assistance during our surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Feldens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feldens, P., Mitchell, N.C. (2015). Salt Flows in the Central Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_12

Download citation

Publish with us

Policies and ethics