Skip to main content

Red Sea Salt Formations—A Result of Hydrothermal Processes

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

A new conceptual model, called ‘the hydrothermal salt model’, predicts that salt may accumulate in the marine sub-surface from the hydrothermal circulation of sea water. The hypothesis is based on the physicochemical behaviour of supercritical sea water; when sea water is driven into its supercritical high-temperature and high-pressure domain (407 °C, 298 bars), it loses its solubility for the common sea salts (chlorides and sulphates). Consequently, a spontaneous precipitation of salts takes place in the water-filled pore spaces. The same process may occur when porous rocks containing saline pore water are exposed to sufficiently high temperature and pressure, for example in the subduction of oceanic crust. Salts will also precipitate sub-surface or sub-marine during boiling, in contact with high heat flow sources, such as magma intrusions. Large accumulations of salt are found within the central trough and along both sides of the Red Sea rift. Many of the associated accumulation features are difficult to explain in terms of the conventional ‘evaporite’ model for salt deposits. The features are as follows: (1) several kilometre thick salt deposits on both flanks of the Red Sea, (2) thick (~3 km) salt deposits inside the central graben, (3) dense, hot brines inside some of the central graben deeps (Atlantis II Deep, Conrad Deep, etc.), (4) up to 40-km-long walls and ridges of exposed salt on the northern Red Sea seafloor, (5) tall walls of salt adjacent to the Conrad Deep central graben, and (6) large flows of salt in the Thetis Deep. Furthermore, these huge accumulations of salt took place in a relatively short geological period of time. On the basis of these pertinent structures and features, it is concluded that accumulation, deformation, and transportation of salts may have several drivers and origins, including a process closely associated with hydrothermal activity. Whereas hydrothermally produced salts are lost directly to sea water in mid-ocean spreading hydrothermal systems, they are protected by sediments and ponded high-density brines on the seafloor in deep-spreading centres like that of the Red Sea. Because the Red Sea is the closest active analogue to the rifting and rupturing of ‘Atlantic-type’ continental lithosphere, it may also be the key to understanding the accumulations of huge underground salt deposits and salt-related structures in some of the world’s ancient deep-water rifted margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon P, Roberts HH, Snelling R (1992) Submarine venting of brines in the deep Gulf of Mexico: observations and geochemistry. Geology 20:483–486

    Article  Google Scholar 

  • Anschutz P, Blanc G, Chatin F, Geiller M, Pierret M-C (1999) Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res Part I 46(10):1779–1792

    Article  Google Scholar 

  • Babel M, Schreiber BC (2014) Geochemistry of evaporites and evolution of seawater. In: Treatise on Geochemistry Elsevier Ltd, New York, pp 483–560. http://dx.doi.org/10.1016/B978-0-08-095975-7.00621-5

  • Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Miner Deposita 26:217–227

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continent to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Burke K (1996) The African plate. S Afr J Geol 99:339–409

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst, AGU, Q03006. doi:10.1029/2004GC000826

  • Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting. Geol Soc London Spec Publ 282:265–289

    Article  Google Scholar 

  • Cochran JR, Martinez F, Steckler MS, Hobart MA (1986) Conrad deep: a new Northern Red Sea deep. Origin and implications for continental rifting. Earth Planet Sci Lett 78:18–32

    Article  Google Scholar 

  • Coumou D, Driesner T, Heinrich CA (2008) The structure and dynamics of mid-ocean ridge hydrothermal systems. Science 321:1825–1828

    Article  Google Scholar 

  • Davison I, Anderson L, Nuttall P (2012) Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. In: Alsop GI et al. (eds) Salt tectonics, sediments and prospectivity, special publication 363. Geological Society of London, pp 159–173

    Google Scholar 

  • Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 535–541

    Book  Google Scholar 

  • Ehrhardt A, Hübscher C, Gajewski D (2005) Conrad deep, northern Red Sea: development of an early stage ocean deep within the axial depression. Tectonophysics 411:19–40

    Article  Google Scholar 

  • Gaulier JM, LePichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Salah H (1988) Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics 116:55–88

    Article  Google Scholar 

  • Gay A, Takano Y, Gilhooly WP III, Berndt C, Heeschen K, Suzuki N, Saegusa S, Nakagawa F, Tsunogai U, Jiang SY, Lopez M (2011) Geophysical and geochemical evidence of large scale fluid flow within shallow sediments in the eastern Gulf of Mexico, offshore Louisiana. Geofluids 11:34–47

    Article  Google Scholar 

  • Geiger S, Driesner T, Heinrich CA, Matthäi SK (2005) On the dynamics of NaCl-H2O fluid convection in the Earth’s crust. J Geophys Res 110:B07101

    Google Scholar 

  • Hardie LA (1991) On the significance of evaporates. Ann Rev Earth Planet Sci 19:131–168

    Article  Google Scholar 

  • Hewitt DF (1962) Salt in Ontario. Industrial mineral report no 6, Ontario Department of Mines, 40 pp

    Google Scholar 

  • Holness MB, Lewis S (1997) The structure of halite-brine interface inferred from pressure and temperature variations of equilibrium dihedral angles in the halite–H2O–CO2 system. Geochim Cosmochim Acta 61(4):795–804

    Article  Google Scholar 

  • Hovland M, Hill A, Stokes D (1997) The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology 21:1–15

    Article  Google Scholar 

  • Hovland M, MacDonald I, Rueslåtten H, Johnsen HK, Naehr T, Bohrmann G (2005) Chapopote asphalt volcano may have been generated by supercritical water. EOS 86(42):397–402

    Article  Google Scholar 

  • Hovland M, Kutznetsova T, Rueslåtten H, Kvamme B, Johnsen HK, Fladmark GE, Hebach A (2006a) Sub-surface precipitation of salts in supercritical seawater. Basin Res 18(2):221–230

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK, Kvamme B, Kutznetsova T (2006b) Salt formation associated with sub-surface boiling and supercritical water. Mar Pet Geol 23:855–869

    Article  Google Scholar 

  • Hovland M, Rueslåtten H, Johnsen HK, Fichler C (2009) Hydrothermal evaporites—from the Conrad Deep, via Dallol, to Elysium Planitia (Abstract). International association of sedimentologists (IAS) annual meeting, Alghero, Sardinia, Book of Abstracts

    Google Scholar 

  • Ings SJ, Beaumont C (2010) Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’ minibasins. Geology 38(4):339–342

    Article  Google Scholar 

  • Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, and potassium. Geochem Geophys Geosyst 4(5):8905

    Article  Google Scholar 

  • Katz A, Starinsky A, Taitel-Goldman N, Beyth M (1981) Solubilities of gypsum and halite in the Dead Sea and in its mixtures with seawater. Limnolo Oceanogr 26(4):709–716

    Article  Google Scholar 

  • Kendall AC (2005) Evaporites. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology, vol 5. Elsevier, Amsterdam, pp 94–97

    Chapter  Google Scholar 

  • Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich H-H, Strauss H (2013) Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5ºS on the Mid-Atlantic Ridge. Geology 36(8):615–618

    Article  Google Scholar 

  • Lewis S, Holness M (1996) Equilibrium halite-H2O dihedral angles: High rock-salt permeability in the shallow crust? Geology 24:432–434

    Google Scholar 

  • Lowell RP, Germanovich LN (1997) Evolution of a brine-saturated layer at the base of a ridge-crest hydrothermal system. J Geophys Res 102:10245–10255

    Article  Google Scholar 

  • Lowell RP, Rona P (2005) Hydrothermal activity. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology, vol 5. Elsevier, Amsterdam, pp 362–372

    Chapter  Google Scholar 

  • Lowell RP, Rona PA, Von Herzen RP (1995) Seafloor hydrothermal systems. J Geophys Res 100:327–352

    Article  Google Scholar 

  • Lowenstein TK, Kendall B, Anbar AD (2014) The geologic history of seawater. In: Treatise on geochemistry Elsevier Ltd, New York, pp 569–621. http://dx.doi.org/10.1016/B978-0-08-095975-7.00621-5

  • Løseth H, Rodrigues N, Cobbold PR (2012) World’s largest extrusive body of sand? Geology. doi:10.1130/G33117.1

  • MacDonald IR et al (2004) Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science 304:999–1002

    Article  Google Scholar 

  • Mart Y, Ross DA (1987) Post-miocene rifting and diapirism in the northern Red Sea. Mar Geol 74:173–190

    Article  Google Scholar 

  • Miller NC, Lizarralde D, Harding A, Kent G (2009) Constraints on early Gulf of California rifting from seismic images across the eastern margin of Guaymas Basin. AGU fall meeting, Abstract, Poster T31A-1783

    Google Scholar 

  • Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010a) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122(5/6):701–713

    Article  Google Scholar 

  • Mitchell NC, Schmidt M, Ligi M (2010b) Comment on formation of Thetis deep metal-rich sediments in the absence of brines, Red Sea by Pierret et al (2010). J Geochem Explor 108: 112–113

    Google Scholar 

  • Montgomery DR, Som SM, Jackson MPA, Schreiber BC, Gillespie AR, Adams JB (2009) Continental-scale salt tectonics on mars and the origin of Valles Marineris and associated outflow channels. Geol Soc Am Bull 121(1/2):117–133. doi:10.1130/B26307.1

    Google Scholar 

  • Orszag-Sperber F, Harwood G, Kendall A, Purser BH (1998) A review of the evaporites of the Red Sea-Gulf of Suez rift. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 409–426

    Chapter  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Berlin, 1250 pp

    Book  Google Scholar 

  • Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II Deep, Red Sea: evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Mineral 26:765–786

    Google Scholar 

  • Ruppel C, Dickens GR, Castellini DG et al (2005) Heat and salt inhibition of gas hydrate formation in the northern GoM. Geophys Res Lett 32:L04605

    Article  Google Scholar 

  • Sassen R, Roberts HH, Carney R, Milkov A, DeFreitas DA, Lanoil B, Zhang C (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology 205(3–4):195–217

    Article  Google Scholar 

  • Savoyat E, Shiferaw A, Balcha T (1989) Petroleum exploration in the Ethiopian Red Sea. J Pet Geol 12:187–204

    Article  Google Scholar 

  • Schmalz RF (1969) Deep-water evaporite deposition: a genetic model. Am Assoc Petrol Geol 53:758

    Google Scholar 

  • Schoenherr J, Littke R, Urai JL, Kukla PA, Rawahi Z (2007a) Polyphase thermal evolution in the infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Org Geochem 38:1293–1318

    Article  Google Scholar 

  • Schoenherr J, Urai JL, Kukla PA, Littke R, Schléder Z, Larroque J-M, Newall MJ, Al-Abry N, Al-Siyabi H, Rawahi Z (2007b) Limits to the sealing capacity of rock salt: a case study of the infra-Cambrian Ara salt from the south Oman salt basin. Am Assoc Petrol Geol 91(11):1541–1557

    Google Scholar 

  • Schreiber BC, Hsü KJ (1980) Evaporites. In: Hobson GD (ed) Developments in petroleum geology, vol 2. Applied Science Ltd, London, pp 87–138

    Google Scholar 

  • Schreiber BC, Lugli S, Babel M (2007) Evaporites through space and time. Geol Soc London Spec Publ 285:1–13

    Article  Google Scholar 

  • Searle RC, Ross DA (1975) A geophysical study of the Red Sea axial trough between 2.5º and 22ºN. Geophys J Roy Astron Soc 43:555–572

    Article  Google Scholar 

  • Selley RC (2005) Mineralogy and classification. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology, vol 5. Elsevier, Amsterdam, pp 27–37

    Google Scholar 

  • Simakin A, Ghassemi A (2003) Salt loaded heat pipes: steady-state operation and related heat and mass transport. Earth Planet Sci Lett 215:411–424

    Article  Google Scholar 

  • Simoneit BR (1993) Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems. Geochima et Cosmochima Acta 57:3231–3243

    Article  Google Scholar 

  • Stoffers P, Kühn R (1973) Red Sea evaporites: a petrographic and geochemical study. In: Whitmarsh RB et al Leg 23, Deep Sea drilling project final report, Texas A and M University, pp 821–847

    Google Scholar 

  • Talbot CJ (2007) Hydrothermal salt—but how much? Discussion. Marine and petroleum geology. doi:10.1016/J.Marpetgeo.2007.05.005

  • Tester J, Holgate HR, Armellini FJ, Webley PA, Killilea WR, Hong GT, Berner HE (1993) Supercritical water oxidation technology. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management III. American Chemical Society, Washington, DC, pp 35–76

    Chapter  Google Scholar 

  • Vendeville BC (2005) Salt tectonics driven by sediment progradation: part I mechanics and kinematics. Am Assoc Pet Geol Bull 89:1071–1079

    Google Scholar 

  • Von Damm KL, Lilley MD, Shanks III WC, Bockington M, Bray AM, O’Grady KM, Olson E, Graham A, Proskurowski G, the SouEPR science party (2003) Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci Lett 206(3–4):365–378

    Google Scholar 

  • Wall D, Warren JS (1969) Dinoflagellates in Red Sea piston cores. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York Inc, pp 317–347

    Chapter  Google Scholar 

  • Warren JK (2010) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin, 998 pp

    Google Scholar 

  • Whitmarsh RB, Weser PE, Ross DA (1974) Initial reports of the Deep Sea drilling project, vol 23. US Government Printing Office, Washington, pp 821–847

    Google Scholar 

  • Zierenberg RA, Holland ME (2004) Sedimented ridges as a laboratory for exploring the subsurface biosphere. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges. American Geophysical Union, Washington, DC, pp 305–323

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Najeeb M.A. Rasul for inviting us to participate in the Red Sea book project, Christian Hübscher for very interesting and engaged discussions, and Bjørn Jamtveit for inviting us to present the associated salt dome model at the 26th Kongsberg deep-earth seminar, 2013. We also wish to thank our two reviewers, Charlotte B. Schreiber and Christopher Talbot for their thorough, constructive and encouraging comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hovland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hovland, M., Rueslåtten, H., Johnsen, H.K. (2015). Red Sea Salt Formations—A Result of Hydrothermal Processes. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_11

Download citation

Publish with us

Policies and ethics