Skip to main content

Completeness of Reidemeister-Type Moves on Labelled Apparent Contours

  • Chapter
  • First Online:
Shape Reconstruction from Apparent Contours

Part of the book series: Computational Imaging and Vision ((CIVI,volume 44))

  • 999 Accesses

Abstract

In this chapter we illustrate the results and report the figures from the paper [3]. More specifically, we shall prove that there exists a finite set of simple, or elementary, moves (also called rules) on labelled apparent contours, such that the following property holds: the images \(\Sigma _{1}\) and \(\Sigma _{2}\) of two stable embeddings of a closed smooth (not necessarily connected) surface M in \(\mathbb{R}^{3}\) are isotopic if and only if their apparent contours can be connected using finitely many isotopies of \(\mathbb{R}^{2}\), and a finite sequence of elementary moves or of their inverses (sometimes called “reverses”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Theorem 6.0.3 and Corollary 6.6.5 for a precise statement.

  2. 2.

    Namely, the fact that there are no other moves, besides those in the list of Sect. 6.1, necessary to connect two apparent contours of isotopic surfaces.

  3. 3.

    In [6, Definition 2] a different notion of equivalence between maps is introduced. Such a definition can be more suitable when the target space is the cartesian product of a two-dimensional manifold with \(\mathbb{R}\).

  4. 4.

    A realization in space of these moves involves two folds of the surface which can be “far one from the other”.

  5. 5.

    The move L can be realized in space by considering the surface in Fig. 1.4, by gradually reducing the “hill”. The inverse of a move B can be realized by straightening the central part of a depression in a long “wave” with two parallels arcs corresponding to the crease and the valley of the wave.

  6. 6.

    Compare also with Definition 8.1.1.

  7. 7.

    See Chap. 5

  8. 8.

    See Theorem 2.1.14.

  9. 9.

    See, e.g., [9] and the references therein, or also [15, p. 597, 600, 601]. Usually, a stratified Morse function takes real values: for technical reasons, we consider here the slightly different case of a function taking values in \(\mathbb{S}^{1}\), but the definition is essentially the same.

  10. 10.

    Hence, the critical points of \(u_{\vert Y _{j}}^{}\) are nondegenerate.

  11. 11.

    By definition, points of Y 3 are considered as critical points of u.

  12. 12.

    The converse statement also holds true, as a consequence of the Isotopy Extension Theorem (see, for instance, [11, Theorem 1.3, p. 180], see also [19, pp. 157–201]). Namely, suppose that γ, e1 and e2 are as in (6.5). Then, γ induces an isotopy from e1(M) to \(\mathbb{R}^{3}\), which extends to an \(\mathbb{R}^{3}\)-ambient isotopy with compact support.

  13. 13.

    Notice that the map \(\alpha \in \mathcal{C}^{\infty }(\mathcal{S}, \mathbb{R}^{3}) \rightarrow F_{\alpha } \in \mathcal{C}^{\infty }(\mathcal{S},\mathcal{T} )\) is continuous.

  14. 14.

    Note also that, defining \(f_{\varphi _{t}}\) as in (2.2), we have \(f_{\varphi _{t}}(x) = \#\{m \in M: F_{\gamma }(m,t) = (x,t)\}\) for any \((x,t) \in \mathcal{T}\).

  15. 15.

    For t ∈ [0, 1], we use the notation \(\tilde{\gamma }_{t}(\cdot ) =\tilde{\gamma } (\cdot,t)\) .

  16. 16.

    See, for instance, [8, p. 176, 177], and more generally [13, 14].

  17. 17.

    See [18, Proposition 5.4] for related problems.

  18. 18.

    To be more specific, [4, Fig. 9(row 1, column 1)] corresponds to move L; [4, Fig. 9(2,1)] corresponds to move B; [4, Fig. 9(3,1)] corresponds to move S; [4, Fig. 10(1,1)] corresponds to move K; [4, Fig. 10(1,2)] corresponds to move C; [4, Fig. 10(2,1)] corresponds to move T. Theorem [4, 3.2.3] is a simpler version of [4, Theorem 3.5.5], in which the height function is not considered, and hence is more close to Corollary 6.6.2. It follows by combining the classifications given by [10, 16, 21].

References

  1. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. I. Birkhäuser, Boston (1985)

    Book  Google Scholar 

  2. Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A. (eds.): Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993)

    Google Scholar 

  3. Bellettini, G., Beorchia, V., Paolini, M.: Completeness of Reidemeister-type moves for surfaces embedded in three-dimensional space. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22, 1–19 (2011)

    Google Scholar 

  4. Carter, J.S., Rieger, J.H., Saito, M.: A combinatorial description of knotted surfaces and their isotopies. Adv. Math. 127, 1–51 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crowell, R.H., Fox, R.H.: Introduction to Knot Theory. Springer, New York (1977)

    Book  MATH  Google Scholar 

  6. Favaro, L.A., Mendes, C.M.: Global stability for diagrams of differentiable applications. Ann. Inst. Fourier (Grenoble) 36, 133–153 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fisher, G.M.: On the group of all homeomorphisms of a manifold. Trans. Am. Math. Soc. 97, 193–212 (1960)

    Article  MATH  Google Scholar 

  8. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York/Heidelberg/Berlin (1974)

    Google Scholar 

  9. Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  10. Goryunov, V.V.: Monodromy of the image of a mapping. Funct. Anal. Appl. 25, 174–180 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hirsch, M.W.: Differential Topology. Springer, Academic Press, New York (1976)

    Book  MATH  Google Scholar 

  12. Kosinski, A.A.: Differential Manifolds. Academic, New York (1993)

    MATH  Google Scholar 

  13. Morin, B.: Formes canoniques des singularities d’une application différentiable. C. R. Acad. Sci. Paris 260, 5662–5665 (1965)

    MATH  MathSciNet  Google Scholar 

  14. Morin, B.: Formes canoniques des singularities d’une application différentiable. C. R. Acad. Sci. Paris 260, 6503–6506 (1965)

    MathSciNet  Google Scholar 

  15. Pignoni, R.: Density and stability of Morse functions on a stratified space. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6, 593–608 (1979)

    MATH  MathSciNet  Google Scholar 

  16. Rieger, J.H.: On the complexity and computation of view graph of piecewise smooth algebraic surfaces. Phil. Trans. R. Soc. Lond. A 354, 1899–1940 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Roseman, D.: Reidemeister-type moves for surfaces in four dimensional space. In: Jones, V.F.R., et al. (eds.) Knot Theory. Proceedings of the Mini-Semester, Warsaw, Poland 1995, vol. 42, pp. 347–380. Banach Center Publications, Warsaw (1998)

    Google Scholar 

  18. Roseman, D.: Elementary moves for higher dimensional knots. Fundam. Math. 184, 291–310 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thom, R.: La classifications des immersions. Seminaire Bourbaki, 157-01–157-11 (1957)

    Google Scholar 

  20. Thom, R.: Ensembles and morphismes stratifiés. Bull. Am. Math. Soc. 70, 240–284 (1969)

    Article  MathSciNet  Google Scholar 

  21. West, J.M.: The differential geometry of the crosscap. Ph.D. thesis, University of Liverpool, England (1995)

    Google Scholar 

  22. Whitney, H.: Elementary structures of real algebraic varieties. Ann. Math. 66, 545–556 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  23. Whitney, H.: Local properties of analytic varieties. In: Cairns, S.S. (ed.) Differential and Combinatorial Topology, pp. 205–244. Princeton University Press, Princeton (1965)

    Google Scholar 

  24. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81, 496–549 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellettini, G., Beorchia, V., Paolini, M., Pasquarelli, F. (2015). Completeness of Reidemeister-Type Moves on Labelled Apparent Contours. In: Shape Reconstruction from Apparent Contours. Computational Imaging and Vision, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45191-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45191-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45190-8

  • Online ISBN: 978-3-662-45191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics