Skip to main content

Stable Maps and Morse Descriptions of an Apparent Contour

  • Chapter
  • First Online:
Shape Reconstruction from Apparent Contours

Part of the book series: Computational Imaging and Vision ((CIVI,volume 44))

  • 1013 Accesses

Abstract

In this chapter we recall the notion of stable map between two manifolds.1 It is convenient to introduce the terminology in arbitrary dimension, and in a rather abstract setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [23, 25, 26], the books [9, 10, 18, 24], the references quoted in [27], and also [1, 17].

  2. 2.

    The map \(\mathcal{F}\) keeps the orientation: for instance, when n = 2, a positively oriented Jordan curve in \(\mathbb{R}^{2}\) is mapped through \(\mathcal{F}\) into a positively oriented Jordan curve.

  3. 3.

    In the terminology of Thom, Morse functions are called correct, and Morse functions with distinct critical values are called excellent [6].

  4. 4.

    Not quite, since \(\mathbb{R}\) is not closed. However we require functions to behave “nicely” outside some interval [a, b], e.g. by forcing them to have constant nonzero derivative.

  5. 5.

    In this book a knot is a \(\mathcal{C}^{\infty }\) embedding of \(\mathbb{S}^{1}\) in \(\mathbb{R}^{3}\), hence in particular a tame knot in the usual terminology; see, for instance, [8, p. 5].

  6. 6.

    Therefore, each of these curves is the embedded image of \(\mathbb{S}^{1}\) into \(\mathcal{X}\).

  7. 7.

    We warn the reader that these cusps, belonging to the source manifold \(\mathcal{X}\), should not be confused with the cusps of an apparent contour, which lie in the target manifold \(\mathcal{Y}\).

  8. 8.

    Sometimes called the cone on a figure-eight curve.

  9. 9.

    See, for instance, [10, Chapter II, Proposition 5.8].

  10. 10.

    See [23] and [10, p. 162].

  11. 11.

    M is an abstract manifold, not necessarily oriented or connected. We shall be mostly interested (for instance, in Sect. 3.2) in the case when M can be embedded in \(\mathbb{R}^{3}\), which gives, in particular, an orientation to \(M\).

  12. 12.

    Locally, each cusp of the apparent contour is diffeomorphic to the simple (or ordinary, see, for instance, [3, p. 115]) cusp, which has the form \(\{(x_{1},x_{2}): x_{2}^{2} = x_{1}^{3}\}\) or equivalently, in a parametric form, \((t^{2},t^{3})\) for a real parameter t in a neighbourhood of the origin.

  13. 13.

    The component is, sometimes, called “irreducible” (with cusps and double points); see, e.g., [22].

  14. 14.

    Compare, for instance, with Chaps. 1 (Fig. 1.3) and 4. We specify below and in Definition 4.1.1 what is a closed arc, a nonstandard feature in graph theory.

  15. 15.

    In [12, Theorem 1] the author gives necessary and sufficient conditions for the factorization of an excellent map (see Example 2.1.8) through an immersion and a projection.

  16. 16.

    The notion of positive and negative cusps of Definition 2.2.12 (see, e.g., [21]) is different from the notion considered in Chap. 8 (compare Definition 8.1.2 and Remark 8.1.3).

  17. 17.

    The first property means that H admits an extension of class \(\mathcal{C}^{\infty }\) on an open set of \(\mathbb{R}^{n+1}\) containing \(\mathbb{R}^{n} \times [0, 1]\).

  18. 18.

    Consistently, we set h t (⋅ ) = h(⋅ , t).

  19. 19.

    We recall that, if V is a \(\mathcal{C}^{\infty }\) orientable n-dimensional manifold without boundary, and if Diff+(V ) denotes the group of positive diffeomorphisms of V endowed with the \(\mathcal{C}^{\infty }(V,V )\) topology, then the orbits coincide with the connected components; see [7, p. 1]. If \(V = \mathbb{S}^{2}\), then the connected component of the identity coincides with the arcwise connected component of the identity (see [6, p. 1]).

  20. 20.

    Actually, even {0} could not be left fixed by \(\tilde{h}_{t}\).

  21. 21.

    Making use of (2.4), we define R(⋅ , t) as follows. Let us identify \(\mathbb{S}^{2}\) with the unit sphere in \(\mathbb{R}^{3}\) and endow it with parallels and meridians with the north pole identified with and \(0 \in \mathbb{S}^{2}\) identified with the south pole. The stereographic projection from the north pole to the tangent plane at the south pole provides an identification of points of \(\mathbb{R}^{2}\) with points of \(\mathbb{S}^{2}\setminus \{\infty \}\) (we employ a scale reduction of a factor \(2\) on the stereographic projection so that the equator is mapped onto the unit circle of \(\mathbb{R}^{2}\)). Suppose first that \(\tilde{h}_{t}(0)\) is not the south pole. Let P(t) be the intersection between the equator of \(\mathbb{S}^{2}\) and the meridian passing through (the poles and) \(\tilde{h}_{t}(0)\). Let r(t) be the line (in \(\mathbb{R}^{3}\)) joining p(t) to q(t), where p(t) [respectively q(t)] is the point on the equator having the longitude of P(t) plus (respectively minus) π∕2. Then R(⋅ , t) is the (smallest) rotation around r(t) sending \(\tilde{h}_{t}(0)\) into the origin. This is a rotation of angle given by the latitude of \(\tilde{h}_{t}(0)\) plus π∕2, clearly this rotation takes the above-mentioned meridian into itself. If \(\tilde{h}_{t}(0)\) is the south pole, we define \(R(\cdot,t):=\mathrm{ id}_{\mathbb{S}^{2}}(\cdot )\). Then, \(R(\cdot,t) \in \mathrm{ Diff}^{+}(\mathbb{S}^{2})\), and R is of class \(\mathcal{C}^{\infty }\) and satisfies the required properties.

  22. 22.

    This task is similar to describing a prime knot in knot theory by means of notations like the one introduced by Dowker-Thistletwaite [16, p. 7], see also the combinatorial description of knotted surfaces in [4, pp. 21,22].

  23. 23.

    See [11] for the definition of stratifications and stratified maps. Compare also with Chap. 6, Definition 6.2.3.

  24. 24.

    See, e.g., [4].

  25. 25.

    Notice that \(\mathfrak{m}\) can be thought of as an element of \(\mathrm{Diff}_{\mathrm{c}}(\mathbb{R}^{2})\).

References

  1. Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A.: In: V.I. Arnold (ed.) Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993)

    Google Scholar 

  2. Audin, M., Damian, M.: Théorie de Morse et Homologie de Floer. EDP Sciences. CNRS Editions, Paris (2010)

    MATH  Google Scholar 

  3. Bruce, J.W., Giblin, P.J.: Curves and Singularities. A Geometrical Introduction to Singularity Theory, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  4. Carter, J.S., Kamada, S., Saito, M.: Surfaces in 4-Space. Encyclopaedia of Mathematical Sciences, vol. 142. Springer, Berlin (2004)

    Google Scholar 

  5. Cerf, J.: La Théorie de Smale sur le h-cobordisme des variétés, 1961/1962 Séminaire Henri Cartan, 1961/62, Exp. 11–13 23 pp. Secrétariat Mathématique, Paris

    Google Scholar 

  6. Cerf, J.: Sur le difféomorphismes de la sphère de dimension trois (\(\Gamma _{4} = 0\)). Lecture Notes in Mathematics, vol. 53. Springer, Berlin (1968)

    Google Scholar 

  7. Cerf, J.: La stratification naturelle des espace de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math. Inst. Hautes Études Sci. 5–170 (1970)

    Google Scholar 

  8. Crowell, R,H., Fox, R.H.: Introduction to Knot Theory. Springer, New York (1977)

    Google Scholar 

  9. Gibson, C.G.: Singular Points of Smooth Mappings. Research Notes in Mathematics. Pitman, London (1978)

    Google Scholar 

  10. Golubitsky, M, Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1974)

    Google Scholar 

  11. Goresky, M., MacPherson, R.: Stratified Morse Theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  12. Haefliger, A.: Quelques remarques sur les applications différentiables d’une surface dans le plan. Ann. Inst. Fourier. Grenoble 10, 47–60 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hatcher, A.: Algebraic Topology Online Book. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  14. Hirsch, M.W.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  15. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

    Google Scholar 

  16. Lickorish, W.B.R.: An Introduction to Knot Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  17. Lu, Y.C.: Singularity Theory and an Introduction to Catastrophe Theory. Universitext. Springer, New York (1976)

    Book  MATH  Google Scholar 

  18. Martinet, J.: Singularités des Fonctions et Applications Differentiables. Pontificia Universidade de Rio de Janeiro, Rio de Janeiro (1974)

    Google Scholar 

  19. Munkres, J.: Differentiable isotopies on the 2-sphere. Mich. Math. J. 7, 193–197 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  20. Munkres, J.: Obstruction to the smoothing of piecewise-differentiable homeomorphisms. Ann. Math. 72, 521–554 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ohmoto, T., Aicardi, F.: First order local invariants of apparent contours. Topology 45, 27–45 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pignoni, R.: Curves and surfaces in real projective spaces: an approach to generic projections. Banach Center Publ. 88, 335–351 (1988)

    MathSciNet  Google Scholar 

  23. Thom, R.: Les singularités des applications différentiables. Ann. Inst. Fourier 6, 43–87 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  24. Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin, Inc., Reading (1972)

    Google Scholar 

  25. Whitney, H.: On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. 62, 374–410 (1955)

    MATH  MathSciNet  Google Scholar 

  26. Whitney, H.: Singularities of mappings of Euclidean spaces. Sympos. Internac. Topologica Algebrica Mexico 62, 285–301 (1958)

    MathSciNet  Google Scholar 

  27. Wilson, L.C.: Equivalence of stable mappings between two-dimensional manifolds. J. Differ. Geom. 11, 1–14 (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellettini, G., Beorchia, V., Paolini, M., Pasquarelli, F. (2015). Stable Maps and Morse Descriptions of an Apparent Contour. In: Shape Reconstruction from Apparent Contours. Computational Imaging and Vision, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45191-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45191-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45190-8

  • Online ISBN: 978-3-662-45191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics