Skip to main content

Evacuating Robots via Unknown Exit in a Disk

  • Conference paper
Distributed Computing (DISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8784))

Included in the following conference series:

Abstract

Consider k mobile robots inside a circular disk of unit radius. The robots are required to evacuate the disk through an unknown exit point situated on its boundary. We assume all robots having the same (unit) maximal speed and starting at the centre of the disk. The robots may communicate in order to inform themselves about the presence (and its position) or the absence of an exit. The goal is for all the robots to evacuate through the exit in minimum time.

We consider two models of communication between the robots: in non-wireless (or local) communication model robots exchange information only when simultaneously located at the same point, and wireless communication in which robots can communicate one another at any time.

We study the following question for different values of k: what is the optimal evacuation time for k robots? We provide algorithms and show lower bounds in both communication models for k = 2 and k = 3 thus indicating a difference in evacuation time between the two models. We also obtain almost-tight bounds on the asymptotic relation between evacuation time and team size, for large k. We show that in the local communication model, a team of k robots can always evacuate in time \(3 + \frac{2\pi}{k}\), whereas at least \(3 + \frac{2\pi}{k} - O(k^{-2})\) time is sometimes required. In the wireless communication model, time \(3 + \frac{\pi}{k} + O(k^{-4/3})\) always suffices to complete evacuation, and at least \(3+ \frac{\pi}{k}\) is sometimes required. This shows a clear separation between the local and the wireless communication models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32, 123–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science, vol. 55. Kluwer Academic Publishers (2002)

    Google Scholar 

  4. Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V.S(eds.): Search Theory, A Game Theoretic Approach. Springer (2013)

    Google Scholar 

  5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baeza-Yates, R.A., Schott, R.: Parallel Searching in the Plane. Comput. Geom. 5, 143–154 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumann, N., Skutella, M.: Earliest Arrival Flows with Multiple Sources. Math. Oper. Res. 34(2), 499–512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, A.: On the linear search Problem. Naval Res. Logist. 2, 221–228 (1964)

    MATH  Google Scholar 

  9. Bellman, R.: An optimal search problem. SIAM Rev. 5, 274 (1963)

    Article  Google Scholar 

  10. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Transactions on Robotics 21(3), 376–386 (2005)

    Article  Google Scholar 

  11. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Evacuation problem on the line (in preparation)

    Google Scholar 

  12. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Autonomous Robots 31(4), 299–316 (2011)

    Article  Google Scholar 

  13. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment. In: Proc. 32nd Symp. on Foundations of Computer Science, pp. 298–303 (1991)

    Google Scholar 

  14. Fekete, S., Gray, C., Kröller, A.: Evacuation of Rectilinear Polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoretical Computer Science 399(3), 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gluss, B.: An alternative solution to the “lost at sea” problem. Naval Research Logistics Quarterly 8(1), 117–122 (1961)

    Google Scholar 

  17. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comp. 31, 577–600 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Isbell, J.: Pursuit Around a Hole. Naval Research Logistics Quarterly 14(4), 569–571 (1967)

    Article  MATH  Google Scholar 

  19. Kijima, S., Yamashita, M., Yamauchi, Y.: Private communication (2013)

    Google Scholar 

  20. Kleinberg, J.M.: On-line Search in a Simple Polygon. In: SODA, pp. 8–15 (1994)

    Google Scholar 

  21. Lidbetter, T.: Hide-and-seek and Other Search Games, PhD Thesis. London School of Economics (2013)

    Google Scholar 

  22. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633–702 (2000)

    Google Scholar 

  23. Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2007)

    Google Scholar 

  24. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84, 127–150 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thrun, S.: A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots. I. J. Robotic Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  26. Yamauchi, B.: Frontier-Based Exploration Using Multiple Robots. In: Agents, pp. 47–53 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D. (2014). Evacuating Robots via Unknown Exit in a Disk. In: Kuhn, F. (eds) Distributed Computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45174-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45173-1

  • Online ISBN: 978-3-662-45174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics