Skip to main content

Randomized Rumor Spreading in Poorly Connected Small-World Networks

  • Conference paper
Distributed Computing (DISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8784))

Included in the following conference series:

  • 1611 Accesses

Abstract

The Push-Pull protocol is a well-studied round-robin rumor spreading protocol defined as follows: initially a node knows a rumor and wants to spread the rumor to all nodes in a network quickly. In each round, every informed node sends the rumor to a random neighbor, and every uninformed node contacts a random neighbor and gets the rumor from her if she knows it. We analyze the behavior of this protocol on random k-trees, a class of power law graphs which are small-world and have large clustering coefficients, built as follows: initially we have a k-clique. In every step a new node is born, a random k-clique of the current graph is chosen, and the new node is joined to all nodes of the k-clique. When k > 2 is fixed, we show that if initially a random node is aware of the rumor, then with probability 1 − o(1) after \(\mathcal{O}\left( (\log n)^{{(k+3)}/{(k+1)}} \cdot \log \log n\cdot f(n) \right)\) rounds the rumor propagates to n − o(n) nodes, where n is the number of nodes and f(n) is any slowly growing function. When k = 2, the previous statement holds for \(\mathcal{O} \left( \log ^2n\cdot \log \log n \cdot f(n) \right)\) many rounds. Since these graphs have polynomially small conductance, vertex expansion \(\mathcal{O}(1/n)\) and constant treewidth, these results demonstrate that Push-Pull can be efficient even on poorly connected networks.

On the negative side, we prove that with probability 1 − o(1) the protocol needs at least \(\Omega\left(n^{({k-1})/({k^2+k-1})}/f^2(n)\right)\) rounds to inform all nodes. This exponential dichotomy between time required for informing almost all and all nodes is striking. Our main contribution is to present, for the first time, a natural class of random graphs in which such a phenomenon can be observed. Our technique for proving the upper bound successfully carries over to a closely related class of graphs, the random k-Apollonian networks, for which we prove an upper bound of \(\mathcal{O}\left( (\log n) ^{{{(k^2-3)}/{(k-1)^2}}} \cdot \log \log n \cdot f(n) \right)\) rounds for informing n − o(n) nodes with probability 1 − o(1), when k > 2 is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems. In: Proc. 27th Symp. Principles of Distributed Computing (PODC), pp. 155–164 (2008)

    Google Scholar 

  2. Berger, N., Borgs, C., Chayes, J., Saberi, A.: On the spread of viruses on the Internet. In: Proc. 16th Symp. Discrete Algorithms (SODA), pp. 301–310 (2005)

    Google Scholar 

  3. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor-Hillel, K., Haeupler, B., Kelner, J.A., Maymounkov, P.: Global computation in a poorly connected world: Fast rumor spreading with no dependence on conductance. In: 44th Symp. Theory of Computing (STOC), pp. 961–970 (2012)

    Google Scholar 

  5. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 375–386. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Chung, F.R.K., Lu, L., Vu, V.H.: The spectra of random graphs with given expected degrees. Internet Mathematics 1(3), 257–275 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cooper, C., Frieze, A.: The height of random k-trees and related branching processes. arXiv 1309.4342v2 [math.CO] (2013)

    Google Scholar 

  8. Cooper, C., Uehara, R.: Scale free properties of random k-trees. Mathematics in Computer Science 3(4), 489–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. 6th Symp. Principles of Distributed Computing (PODC), pp. 1–12 (1987)

    Google Scholar 

  10. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proc. 43rd Symp. Theory of Computing (STOC), pp. 21–30 (2011)

    Google Scholar 

  11. Doerr, B., Fouz, M., Friedrich, T.: Asynchronous rumor spreading in preferential attachment graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 307–315. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks. Commun. ACM 55(6), 70–75 (2012)

    Article  Google Scholar 

  13. Drmota, M.: Random trees: An interplay between combinatorics and probability. Springer, Wien (2009)

    Book  Google Scholar 

  14. Elsässer, R.: On the communication complexity of randomized broadcasting in random-like graphs. In: Proceedings of the 18th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2006, pp. 148–157 (2006)

    Google Scholar 

  15. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flajolet, P., Dumas, P., Puyhaubert, V.: Some exactly solvable models of urn process theory. In: 4th Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp. 59–118. Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2006)

    Google Scholar 

  17. Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: Proc. 29th IEEE Conf. Computer Communications (INFOCOM), pp. 2552–2560 (2010)

    Google Scholar 

  18. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

    Google Scholar 

  19. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: 23th Symp. Discrete Algorithms (SODA), pp. 1642–1660 (2012)

    Google Scholar 

  20. Gao, Y.: The degree distribution of random k-trees. Theor. Comput. Sci. 410(8-10), 688–695 (2009)

    Article  MATH  Google Scholar 

  21. Gao, Y.: Treewidth of Erdős-Rényi random graphs, random intersection graphs, and scale-free random graphs. Discrete Applied Mathematics 160(4-5), 566–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giakkoupis, G.: Tight bounds for rumor spreading with vertex expansion. In: Proc. 25th Symp. Discrete Algorithms (SODA), pp. 801–815 (2014)

    Google Scholar 

  23. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), vol. 9, pp. 57–68 (2011)

    Google Scholar 

  24. Harchol-Balter, M., Leighton, F.T., Lewin, D.: Resource discovery in distributed networks. In: Proc. 18th Symp. Principles of Distributed Computing (PODC), pp. 229–237 (1999)

    Google Scholar 

  25. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Johnson, N.L., Kotz, S.: Urn models and their application: An approach to modern discrete probability theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1977)

    MATH  Google Scholar 

  27. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized Rumor Spreading. In: 41st Symp. Foundations of Computer Science (FOCS), pp. 565–574 (2000)

    Google Scholar 

  28. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: 44th Symp. Foundations of Computer Science (FOCS), pp. 482–491 (2003)

    Google Scholar 

  29. Kloks, T.: Treewidth: Computations and Approximations. Springer (1994)

    Google Scholar 

  30. Mihail, M., Papadimitriou, C.H., Saberi, A.: On certain connectivity properties of the internet topology. In: Proc. 44th Symp. Foundations of Computer Science (FOCS), pp. 28–35 (2003)

    Google Scholar 

  31. Mungan, M.: Comment on “apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs”. Phys. Rev. Lett. 106, 029802 (2011)

    Google Scholar 

  32. Watts, D.J., Strogatz, D.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  33. Zhang, Z., Comellas, F., Fertin, G., Rong, L.: High-dimensional Apollonian networks. J. Phys. A 39(8), 1811–1818 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71, 046141 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehrabian, A., Pourmiri, A. (2014). Randomized Rumor Spreading in Poorly Connected Small-World Networks. In: Kuhn, F. (eds) Distributed Computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45174-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45173-1

  • Online ISBN: 978-3-662-45174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics