Skip to main content

Close to Linear Space Routing Schemes

  • Conference paper
Book cover Distributed Computing (DISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8784))

Included in the following conference series:

  • 1567 Accesses

Abstract

Let G = (V,E) be an unweighted undirected graph with n-vertices and m-edges, and let k > 2 be an integer. We present a routing scheme with a poly-logarithmic header size, that given a source s and a destination t at distance Δ from s, routes a message from s to t on a path whose length is O(kΔ + m 1/k). The total space used by our routing scheme is \(\tilde{O}(mn^{O(1/\sqrt{\log n})})\), which is almost linear in the number of edges of the graph. We present also a routing scheme with \(\tilde{O}(n^{O(1/\sqrt{\log n})})\) header size, and the same stretch (up to constant factors). In this routing scheme, the routing table of every v ∈ V is at most \(\tilde{O}(kn^{O(1/\sqrt{\log n})}deg(v))\), where deg(v) is the degree of v in G. Our results are obtained by combining a general technique of Bernstein [6], that was presented in the context of dynamic graph algorithms, with several new ideas and observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes with affine stretch. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 404–415. Springer, Heidelberg (2011)

    Google Scholar 

  2. Agarwal, R., Godfrey, B., Har-Peled, S.: Faster approximate distance queries and compact routing in sparse graphs. CoRR abs/1201.2703 (2012)

    Google Scholar 

  3. Agarwal, R., Godfrey, P.B.: Distance oracles for stretch less than 2. In: SODA, pp. 526–538 (2013)

    Google Scholar 

  4. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with succinct tables. J. Algorithms 11(3), 307–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM J. Discrete Math. 5(2), 151–162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein, A.: Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time. In: FOCS, pp. 693–702. IEEE Computer Society (2009)

    Google Scholar 

  7. Chechik, S.: Compact routing schemes with improved stretch. In: Fatourou, P., Taubenfeld, G. (eds.) PODC, pp. 33–41. ACM (2013)

    Google Scholar 

  8. Chechik, S.: Approximate distance oracles with constant query time. In: STOC (2014)

    Google Scholar 

  9. Cowen, L.: Compact routing with minimum stretch. In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 255–260. ACM/SIAM (1999)

    Google Scholar 

  10. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor (extended abstract). In: Coan, B.A., Afek, Y. (eds.) PODC, pp. 11–20. ACM (1998)

    Google Scholar 

  12. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Patrascu, M., Roditty, L.: Distance oracles beyond the thorup-zwick bound. In: FOCS, pp. 815–823. IEEE Computer Society (2010)

    Google Scholar 

  14. Patrascu, M., Roditty, L., Thorup, M.: A new infinity of distance oracles for sparse graphs. In: FOCS, pp. 738–747 (2012)

    Google Scholar 

  15. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  16. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Porat, E., Roditty, L.: Preprocess, set, query! In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 603–614. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs, pp. 703–712 (2009)

    Google Scholar 

  19. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10 (2001)

    Google Scholar 

  20. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: SODA, pp. 802–809. ACM Press (2006)

    Google Scholar 

  22. Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time. In: SODA, pp. 202–208 (2012)

    Google Scholar 

  23. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. In: Khanna, S. (ed.) SODA, pp. 539–549. SIAM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roditty, L., Tov, R. (2014). Close to Linear Space Routing Schemes. In: Kuhn, F. (eds) Distributed Computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45174-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45173-1

  • Online ISBN: 978-3-662-45174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics