Skip to main content

Revealing Brain Activity and White Matter Structure Using Functional and Diffusion-Weighted Magnetic Resonance Imaging

  • Chapter
  • First Online:
Clinical Functional MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstracts

Magnetic resonance imaging (MRI) is based on the magnetic excitation of body tissue and the reception of returned electromagnetic signals from the body. Excitation induces phase-locked precession of protons with a frequency proportional to the strength of the surrounding magnetic field as described by the Larmor equation. This fact can be exploited for spatial encoding by applying magnetic field gradients along spatial dimensions on top of the strong static magnetic field of the scanner. The obtained frequency-encoded information for each slice is accumulated in two-dimensional k space. The k space data can be transformed into image space by Fourier analysis.

Functional MRI (fMRI) allows localizing brain function since increased local neuronal activity leads to a surprisingly strong increase in local blood flow, which itself results in measurable increases in local magnetic field homogeneity. Increased local blood flow delivers chemical energy (glucose and oxygen) to the neurons. The temporary increase and decrease of local blood flow, triggered by increased neuronal activity, is called the hemodynamic response starting 2–4 s after stimulus onset. Increased local blood flow results in an oversupply of oxygenated hemoglobin in the vicinity of increased neuronal activity. The oversupply flushes deoxygenated hemoglobin from the capillaries and the downstream venules. Deoxygenated hemoglobin is paramagnetic reducing the homogeneity of the local magnetic field resulting in a weaker MRI signal than would be measurable without it. Oxygenated hemoglobin is diamagnetic and does not strongly reduce field homogeneity. Since the increased local blood flow replaces deoxygenated hemoglobin with oxygenated hemoglobin, local field homogeneity increases, leading to a stronger MRI signal as compared to a nonactivated state. Measured functional brain images thus reflect neuronal activity changes as blood oxygenation level-dependent (BOLD) contrast.

Functional images are acquired using the fast echo-planar imaging (EPI) pulse sequence allowing acquisition of a 64 × 64 image matrix in less than 100 ms. To sample signal changes over time, a set of slices typically covering the whole brain is measured repeatedly. Activation of neurons results in a BOLD signal increase of only about 1–5 % and lie buried within strong physical and physiological noise fluctuations of similar size. Proper preprocessing steps, including 3D motion correction and removal of drifts, reduce the effect of artifacts increasing the signal-to-noise ratio (SNR). In order to reliably detect stimulus-related effects, proper statistical data analysis is performed. In order to estimate response profiles, condition-related time course episodes may be averaged in various regions-of-interest (ROIs). The core statistical tool in fMRI data analysis is the general linear model (GLM) that allows the analysis of blocked and event-related experimental designs. To run a GLM, a design matrix (model) has to be constructed containing reference functions (predictors, model time courses) for all effects of interest (conditions) as well as confounds. The GLM fits the created model to the data independently for each voxel’s data (time course) providing a set of beta values estimating the effects of each condition. These beta values are compared with each other using contrasts resulting in a statistical value at each voxel. The statistical values of all voxels form a three-dimensional statistical map. To protect against wrongly declaring voxels as significant, statistical maps are thresholded properly by taking into account the multiple comparison problem. This problem is caused by the large number of independently performed statistical tests (one for each voxel).

In recent years, parallel imaging techniques have been developed, which allow acquiring MRI data simultaneously with two or more receiver coils. Parallel imaging can be used to increase temporal or spatial resolution. It also helps to reduce EPI imaging artifacts, such as geometrical distortions and signal dropouts in regions of different neighboring tissue types.

MRI has not only revolutionized functional brain imaging targeting gray matter neuronal activity but also enabled insights into the human white matter structure using diffusion-weighted magnetic resonance imaging. With proper measurement and modeling schemes including diffusion tensor imaging (DTI), major long-range fiber tracts can be reconstructed using computational tractography providing important information to guide neurosurgical procedures potentially reducing the risk of lesioning important fiber tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in a real experiment, one would not just present once the control and main condition as in Fig. 14, but several “on-off” cycles; with too few repetitions, task-related response could not be distinguished from potential low-frequency drifts (see Sect. 3.2.2).

  2. 2.

    In the fMRI literature, the term “general linear model” refers to its univariate version where “univariate” refers to the number of dependent variables (one). In its general form, the general linear model has been defined for multiple dependent variables, that is, it encompasses tests as general as multivariate covariance analysis (MANCOVA).

  3. 3.

    Note that the constant term is treated as a confound and it is not included in contrast vectors, i.e., it is implicitly assumed that b 0 is multiplied by 0 in all contrasts. To include the constant explicitly, each contrast vector must be expanded by one entry at the beginning or end.

  4. 4.

    While functional sequences are T2* weighted, the first functional volume of a run contains the richest anatomical detail because it is T1 weighted. Unfortunately, this data set is often thrown away either by the scanner directly (during “prep scans”) or by transfer of the data to the researcher. We recommend to keep the first functional volume and to use it for visualization and coregistration because of its relative richness in anatomical details.

References

  • Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2

    PubMed Central  PubMed  Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Birn RM, Donahue KM (2000) Functional MRI: background, methodology, limits, and implementation. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology. Cambridge University Press, New York, pp 978–1014

    Google Scholar 

  • Barnea-Goraly N, Menon V, Eckert M, Tamm L, Bammer R, Karchemskiy A, Dant CC, Reiss AL (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854

    Article  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self- diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  PubMed  Google Scholar 

  • Bastiani M, Shah NJ, Goebel R, Roebroeck A (2012) Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62:1732–1749

    Article  PubMed  Google Scholar 

  • Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear modeling for group analysis in FMRI. Neuroimage 20:1052–1063

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300

    Google Scholar 

  • Birn RM, Murphy K, Bandettini PA (2008) The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29:740–750

    Article  PubMed Central  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Blamire AM, Ogawa S, Ugurbil K et al (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci U S A 89:11069–11073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bledowski C, Cohen Kadosh K, Wibral M, Rahm B, Bittner RA, Hoechstetter K, Scherg M, Maurer K, Goebel R, Linden DE (2006) Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci 26:821–829

    Article  CAS  PubMed  Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    CAS  PubMed  Google Scholar 

  • Brown MA, Semelka RC (1999) MRI – basic principles and applications. Wiley-Liss, New York

    Google Scholar 

  • Büchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538–1541

    Article  PubMed  Google Scholar 

  • Buckner RL, Bandettini PA, O’Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93:14878–14883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bullmore E, Brammer M, Williams SC et al (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35:261–277

    Article  CAS  PubMed  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygen metabolism during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  CAS  PubMed  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Castelo-Branco M, Formisano E, Backes W, Zanella F, Neuenschwander S, Singer W, Goebel R (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci U S A 99:13914–13919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Cheng K, Waggoner AK, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    Article  CAS  PubMed  Google Scholar 

  • Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing autocorrelated error terms. J Am Stat Assoc 44:32–61

    Google Scholar 

  • Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Article  CAS  PubMed  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367

    Article  PubMed  Google Scholar 

  • De Martino F, Moerel M, van de Moortele PF, Ugurbil K, Goebel R, Yacoub E, Formisano E (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JD, Wandell B (2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 41:354–363

    Article  PubMed  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579

    Article  CAS  PubMed  Google Scholar 

  • Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2003) Real-time independent component analysis of fMRI time-series. Neuroimage 20:2209–2224

    Article  PubMed  Google Scholar 

  • Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205

    Article  PubMed  Google Scholar 

  • Esposito F, Otto T, Zijlstra FRH, Goebel R (2014) Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS One 9:e94222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Evans AC, Collins DL, MIlls SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Proceedings of IEEE-Nuclear Science Symposium and Medical Imaging Conference. pp 1813–1817

    Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  PubMed  Google Scholar 

  • Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a clustersize threshold. Magn Reson Med 3(5):636–647

    Google Scholar 

  • Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Curr Opin Neurobiol 13:174–181

    Article  CAS  PubMed  Google Scholar 

  • Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002) Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49:241–254

    Article  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiological neural activity. Science 241:462–464

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Henson RN (2006) Commentary on: divide and conquer; a defense of functional localisers. Neuroimage 30:1097–1099

    Article  Google Scholar 

  • Friston KJ, Jezzard P, Turner R (1994) The analysis of functional MRI time-series. Hum Brain Mapp 1:153–171

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Stephan KE, Lund TE, Morcom A, Kiebel S (2005) Mixed-effects and fMRI studies. Neuroimage 24:244–252

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN (2006) A critique of functional localisers. Neuroimage 30:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Frost M, Goebel R (2012) Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 59:1369–1381

    Article  PubMed  Google Scholar 

  • Frost M, Goebel R (2013) Functionally informed cortex based alignment: an integrated approach for whole-cortex macro-anatomical and ROI-based functional alignment. Neuroimage 83:1002–1010

    Article  PubMed  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346

    Article  CAS  PubMed  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  PubMed  Google Scholar 

  • Goebel R (2012) BrainVoyager – past, present, future. Neuroimage 62:748–756

    Article  PubMed  Google Scholar 

  • Goebel R, Singer W (1999) Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage 9, S64

    Google Scholar 

  • Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261

    Article  PubMed  Google Scholar 

  • Goebel R, Hasson U, Lefi I, Malach R (2004) Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22(Suppl 2)

    Google Scholar 

  • Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27:392–401

    Article  PubMed  Google Scholar 

  • Goebel R, Zilverstand A, Sorger B (2010) Real-time fMRI-based brain–computer interfacing for neurofeedback therapy and compensation of lost motor functions. Imaging Med 2:407–414

    Article  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Holmes AP, Friston KJ (1998) Generalisability, random effects & population inference, in: Fourth International Conference on functional mapping of the human brain. Neuro Image 7:S754

    Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associatesm, Sunderland

    Google Scholar 

  • Khalili-Mahani N, Zoethout RM, Beckmann CF, Baerends E, de Kam ML et al (2012) Effects of morphine and alcohol on functional brain connectivity during “resting state”: a placebo-controlled crossover study in healthy young men. Hum Brain Mapp 33:1003–1018

    Article  PubMed  Google Scholar 

  • Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    Article  CAS  PubMed  Google Scholar 

  • Kirby KN (1993) Advanced data analysis with SYSTAT. Van Nostrand Reinhold, New York

    Google Scholar 

  • Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA (2000) Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25:493–500

    Article  CAS  PubMed  Google Scholar 

  • Kriegeskorte N, Goebel R (2001) An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14:329–346

    Article  CAS  PubMed  Google Scholar 

  • Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruggel F, von Cramon DY (1999) Temporal properties of the hemodynamic response in functional MRI. Hum Brain Mapp 8:259–271

    Article  CAS  PubMed  Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  • LaConte SM, Peltier SJ, Hu XP (2007) Real-time fMRI using brain-state classification. Hum Brain Mapp 28:1033–1044

    Article  PubMed  Google Scholar 

  • Lenoski B, Baxter LC, Karam LJ, Maisog J, Debbins J (2008) On the performance of autocorrelation estimation algorithms for fMRI analysis. IEEE J Sel Top Sign Process 2:828–838

    Article  Google Scholar 

  • Linden DEJ, Habes I, Johnston SJ, Linden S, Tatineni R, Subramanian L, Sorger B, Healy D, Goebel R (2012) Real-time self-regulation of emotion networks in patients with depression. PLoS One 7:e38115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Logothetis NK, Wandell B (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523:235–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maus B, van Breukelen GJ, Goebel R, Berger MP (2010a) Optimization of blocked designs in fMRI studies. Psychometrica 75:373–390

    Article  Google Scholar 

  • Maus B, van Breukelen GJ, Goebel R, Berger MP (2010b) Robustness of optimal design of fMRI experiments with application of a genetic algorithm. Neuroimage 49:2433–2443

    Article  PubMed  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Article  Google Scholar 

  • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Iragui V, Sejnowski TJ (1998a) Blind separation of functional magnetic resonance imaging (fMRI) data. Hum Brain Mapp 6:368–372

    Article  CAS  PubMed  Google Scholar 

  • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998b) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    Article  CAS  PubMed  Google Scholar 

  • Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216

    Article  PubMed  Google Scholar 

  • Moeller S, Yacoub E, Auerbach E, Strupp JP, Harel N, Ugurbil K (2010) Multi-band multi-slice GE-EPI at 7 Tesla, with 16 fold acceleration using partial parallel imaging with application to high spatial and temporal whole brain fMRI. Magn Reson Med 63:1144–1153

    Article  PubMed Central  PubMed  Google Scholar 

  • Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  PubMed  Google Scholar 

  • NessAiver M (1997) All you really need to know about MRI physics. Simply Physics, Baltimore

    Google Scholar 

  • Nichols TE, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25:653–660

    Article  PubMed  Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22:1157–1172

    Article  CAS  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  • Pullens P, Roebroeck A, Goebel R (2010) Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. J Magn Reson Imaging 32:482–488

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage 7:185–198

    Article  CAS  PubMed  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242

    Article  PubMed  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2011) The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58:296–302

    Article  PubMed  Google Scholar 

  • Saxe R, Brett M, Kanwisher N (2006) Divide and conquer: a defense of functional localizers. Neuroimage 30:1088–1096 (discussion 1097–1089)

    Article  PubMed  Google Scholar 

  • Scherg M, Linden DEJ, Muckli L, Roth R, Drüen K, Ille N, Zanella FE, Singer W, Goebel R (1999) Combining MEG with fMRI in studies of the human visual system. In: Yoshimoto T, Kotani M, Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, Sendai

    Google Scholar 

  • Schild HH (1990) MRI made easy. Schering AG, Berlin

    Google Scholar 

  • Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance Components. Wiley, New York.

    Google Scholar 

  • Seehaus AK, Roebroeck A, Chiry O, Kim DS, Ronen I, Bratzke H, Goebel R, Galuske RAW (2013) Histological validation of DW-MRI tractography in human postmortem tissue. Cereb Cortex 23:442–450

    Article  PubMed Central  PubMed  Google Scholar 

  • Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planer imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorger B, Peters J, van den Boomen C, Zilverstand A, Reithler J, Goebel R (2010) Real-time decoding of the locus of visuospatial attention using multi-voxel pattern classification, 16th edn. Human Brain Mapping, Barcelona

    Google Scholar 

  • Sorger B, Reithler J, Dahmen B, Goebel R (2012) A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr Biol 22:1333–1338

    Article  CAS  PubMed  Google Scholar 

  • Sporns O (2010) Connectome. Scholarpedia 5:5584

    Article  Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Subramanian L, Hindle JV, Johnston S, Roberts MV, Husain M, Goebel R, Linden D (2011) Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J Neurosci 31:16309–16317

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Taki Y, Sassa Y, Hashizume H, Sekiguchi A, Fukushima A, Kawashima R (2010) White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage 51:11–18

    Article  PubMed  Google Scholar 

  • Talairach G, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185

    Article  PubMed  Google Scholar 

  • Tuch DS (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582

    Article  PubMed  Google Scholar 

  • Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372

    Article  PubMed  Google Scholar 

  • van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22:165–178

    Article  PubMed  Google Scholar 

  • van de Ven VG, Formisano E, Roder CH, Prvulovic D, Bittner RA, Dietz MG, Hubl D, Dierks T, Federspiel A, Esposito F, Di Salle F, Jansma B, Goebel R, Linden DE (2005) The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. Neuroimage 27:644–655

    Article  PubMed  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309

    Article  PubMed  Google Scholar 

  • Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  • Weiskopf N (2012) Real-time fMRI and its application to neurofeedback. Neuroimage 62:682–692

    Article  PubMed  Google Scholar 

  • Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586

    Article  PubMed  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493–504

    Article  PubMed  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Evans AC (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918

    Article  CAS  PubMed  Google Scholar 

  • Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. Neuroimage 15:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105:10607–10612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7:e49790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann J, Goebel R, De Martino F, van de Moortele PF, Feinberg D, Adriany G, Chaimov D, Shmuel A, Uğurbil K, Yacoub E (2011) Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLoS One 6:e28716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Goebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goebel, R. (2015). Revealing Brain Activity and White Matter Structure Using Functional and Diffusion-Weighted Magnetic Resonance Imaging. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45123-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45123-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45122-9

  • Online ISBN: 978-3-662-45123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics