Advertisement

Sensing by Acoustic Biosignals

  • Eugenijus KaniusasEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

After the interface between physiologic mechanisms and the resultant biosignals has been examined (Volume I), the subsequent interface between acoustic biosignals and the associated sensing technology is discussed here. A large variety of acoustic biosignals—permanent biosignals—originates in the inner human body, including heart sounds, lung sounds, and snoring sounds. These biosignals arise in the course of the body’s vital functions and convey physiological data to an observer, disclosing cardiorespiratory pathologies and the state of health. The genesis of acoustic biosignals is considered from a strategic point of view. In particular, the introduced common frame of hybrid biosignals comprises both the biosignal formation path from the biosignal source at the physiological level to biosignal propagation in the body, and the biosignal sensing path from the biosignal transmission in the sensor applied on the body up to its conversion to an electric signal. Namely, vibrating structures in the body yield acoustic sounds which are subject to damping while propagating through the thoracic tissues towards the skin. Arrived at the skin, different body sounds interfere with each other and induce mechanical skin vibration which, in turn, is perceived by a body sound sensor and then converted into the electric signal. It is highly instructive from an engineering and clinical point of view how sounds originate and interact with biological tissues. Discussed phenomena teach a lot about the physics of sound (as engineering sciences), and, on the other hand, biology and physiology (as live sciences). Basic and application-related issues are covered in depth. In fact, these issues should remain strong because these stand the test of time and mine knowledge of great value. Obviously, the highly interdisciplinary nature of acoustic biosignals and biomedical sensors is a challenge. However, it is a rewarding challenge after it has been coped with in a strategic way, as offered here. The chapter is intended to have the presence to answer intriguing “Aha!” questions. Open image in new window

Keywords

Obstructive Sleep Apnea Sound Pressure Sound Source Heart Sound Airway Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M. Abella, J. Formolo, D.G. Penney, Comparison of the acoustic properties of six popular stethoscopes. J. Acoust. Soc. Am. 91(4), 2224–2228 (1992)CrossRefGoogle Scholar
  2. G. Amit, K. Shukha, N. Gavriely, N. Intrator, Respiratory modulation of heart sound morphology. Am. J. Physiol. Heart Circ. Physiol. 296(3), 796–805 (2009)CrossRefGoogle Scholar
  3. R. Beck, M. Odeh, A. Oliven, N. Gavriely, The acoustic properties of snores. Eur. Respir. J. 8(12), 2120–2128 (1995)CrossRefGoogle Scholar
  4. N. Brooks, G. Leech, A. Leatham, Factors responsible for normal splitting of first heart sound. High-speed echophonocardiographic study of valve movement. Br. Heart J. 42(6), 695–702 (1979)CrossRefGoogle Scholar
  5. D.L. Brunt, K.L. Lichstein, S.L. Noe, R.N. Aguillard, K.W. Lester, Intensity pattern of snoring sounds as a predictor for sleep-disordered breathing. Sleep 20(12), 1151–1156 (1997)Google Scholar
  6. A. Bulling, F. Castrop, J.D. Agneskirchner, W.A. Ovtscharoff, L.J. Wurzinger, M. Gratzl, Body Explorer. An Interactive Program on the Cross-Sectional Anatomy of the Visible Human Male (Springer, Berlin, 1997)Google Scholar
  7. D. Chamier, Unpublished ball pen drawing, Institute of Art and Design, Vienna University of Technology (2014) Google Scholar
  8. F. Cirignota, Classification and definition of respiratory disorders during sleep. Minerva Med. Rev. 95(3), 177–185 (2004)Google Scholar
  9. F. Dalmay, M.T. Antonini, P. Marquet, R. Menier, Acoustic properties of the normal chest. Eur. Respir. J. 8(10), 1761–1769 (1995)CrossRefGoogle Scholar
  10. J. Earis, Lung sounds. Thorax 47(9), 671–672 (1992)CrossRefGoogle Scholar
  11. K.R. Erikson, F.J. Fry, J.P. Jones, Ultrasound in medicine—a review. IEEE Trans. Sonic Ultrason. 21(3), 144–170 (1974)CrossRefGoogle Scholar
  12. P.Y. Ertel, M. Lawrence, R.K. Brown, A.M. Stern, Stethoscope acoustics I. The doctor and his stethoscope. Circulation 34(5), 889–898 (1966a)CrossRefGoogle Scholar
  13. P.Y. Ertel, M. Lawrence, R.K. Brown, A.M. Stern, Stethoscope acoustics II. Transmission and filtration patterns. Circulation 34(5), 899–909 (1966b)CrossRefGoogle Scholar
  14. P.Y. Ertel, M. Lawrence, W. Song, Stethoscope acoustics and the engineer: concepts and problems. J. Audio Eng. Soc. 19(3), 182–186 (1971)Google Scholar
  15. P. Fachinger, Computer based analysis of lung sounds in patients with pneumonia—Automatic detection of bronchial breathing by Fast-Fourier-Transformation (in German: Computerbasierte Analyse von Lungengeräuschen bei Patienten mit Pneumonie—Automatische Detektion des Bronchialatmens mit Hilfe der Fast-Fourier-Transformation). Dissertation, Philipps-University Marburg, (2003)Google Scholar
  16. D.C. Giancoli, Physics (in German: Physik). Pearson Studium (2006)Google Scholar
  17. L.J. Hadjileontiadis, S.M. Panas, in Nonlinear Separation of Crackles and Squawks from Vesicular Sounds Using Third-Order Statistics. Proceedings of the 18th Annual EMBS International Conference, vol. 5, (1996), pp. 2217–2219Google Scholar
  18. L.J. Hadjileontiadis, S.M. Panas, Adaptive reduction of heart sounds from lung sounds using fourth-order statistics. IEEE Trans. Biomed. Eng. 44(7), 642–648 (1997a)CrossRefGoogle Scholar
  19. L.J. Hadjileontiadis, S.M. Panas, Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Trans. Biomed. Eng. 44(12), 1269–1281 (1997b)CrossRefGoogle Scholar
  20. W. Hohenhorst, Unpublished image data, Clinic of Otolaryngology, Alfried Krupp Hospital, Germany (2000)Google Scholar
  21. P.J. Hollins, The stethoscope. Some facts and fallacies. Br. J. Hosp. Med. 5, 509–516 (1971)Google Scholar
  22. K. Ishikawa, T. Tamura, Study of respiratory influence on the intensity of heart sound in normal subjects. Angiology 30(11), 750–755 (1979)CrossRefGoogle Scholar
  23. Y. Itasaka, S. Miyazaki, K. Ishikawa, K. Togawa, Intensity of snoring in patients with sleep-related breathing disorders. Psychiatry Clin. Neurosci. 53(2), 299–300 (1999)CrossRefGoogle Scholar
  24. V.K. Iyer, P.A. Ramamoorthy, Y. Ploysongsang, Autoregressive modeling of lung sounds: characterization of source and transmission. IEEE Trans. Biomed. Eng. 36(11), 1133–1137 (1989)CrossRefGoogle Scholar
  25. A. Jones, R.D. Jones, K. Kwong, Y. Burns, Effect of positioning on recorded lung sound intensities in subjects without pulmonary dysfunction. Phys. Ther. 79(7), 682–690 (1999)Google Scholar
  26. E. Kaniusas, Multiparametric physiological sensors. Habilitation theses, Vienna University of Technology, 2006Google Scholar
  27. E. Kaniusas, in Acoustical Signals of Biomechanical Systems, ed. by C.T. Leondes. Biomechanical Systems Technology, vol. 4 (World Scientific Publishing, Singapore, 2007), pp. 1–44Google Scholar
  28. E. Kaniusas, H. Pfützner, B. Saletu, Acoustical signal properties for cardiac/respiratory activity and apneas. IEEE Trans. Biomed. Eng. 52(11), 1812–1822 (2005)CrossRefGoogle Scholar
  29. T. Koch, S. Lakshmanan, K. Raum, M. Wicke, D. Mörlein, S. Brand, in Sound Velocity and Attenuation of Porcine Loin Muscle, Backfat and Skin. Proceedings of the International Federation for Medical and Biological Engineering, vol. 25, issue 13 (2010), pp. 96–99Google Scholar
  30. M. Kompis, H. Pasterkamp, Y. Oh, Y. Motai, G.R. Wodicka, in Spatial Representation of Thoracic Sounds. Proceedings of the 20th Annual EMBS International Conference, vol. 20, issue 3 (1998), pp. 1661–1664Google Scholar
  31. M. Kompis, H. Pasterkamp, G.R. Wodicka, Acoustic imaging of the human chest. Chest 120, 1309–1321 (2001)CrossRefGoogle Scholar
  32. D. Leong-Kon, L.G. Durand, J. Durand, H. Lee, in A System for Real-Time Cardiac Acoustic Mapping. Proceedings of the 20th Annual EMBS International Conference, vol. 20, issue 1 (1998), pp. 17–20Google Scholar
  33. C. Lessard, M. Jones, Effects of heart valve sounds on the frequency spectrum of respiratory sounds. Innov. Technol. Biol. Med. 9(1), 116–123 (1988)Google Scholar
  34. G. Liistro, D. Stanescu, C. Veriter, Pattern of simulated snoring is different through mouth and nose. J. Appl. Physiol. 70(6), 2736–2741 (1991)Google Scholar
  35. R. Loudon, R.L.H. Murphy, Lung sounds. Am. Rev. Respir. Dis. 130(4), 663–673 (1984)Google Scholar
  36. A.W. McCombe, V. Kwok, W.M. Hawke, An acoustic screening tool for obstructive sleep apnoea. Clin. Otolaryngol. 20(4), 348–351 (1995)CrossRefGoogle Scholar
  37. E. Meyer, E.G. Neumann, Physical and Technical Acoustics (in German: Physikalische und technische Akustik) (Friedrich Vieweg & Sohn, Braunschweig, 1975)Google Scholar
  38. R. Mikami, M. Murao, D.W. Cugell, J. Chretien, P. Cole, J. Meier-Sydow, R.L. Murphy, R.G. Loudon, International Symposium on lung sounds. Synopsis of proceedings. Chest 92(2), 342–345 (1987)CrossRefGoogle Scholar
  39. M. Moerman, M. De Meyer, D. Pevernagie, Acoustic analysis of snoring: review of literature. Acta Otorhinolaryngol. Belg. 56(2), 113–115 (2002)Google Scholar
  40. A.K. Ng, T.S. Koh, E. Baey, T.H. Lee, U.R. Abeyratne, K. Puvanendran, Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Med. 9(8), 894–898 (2008)CrossRefGoogle Scholar
  41. W.W. Nichols, M.F. O’Rourke, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles (Hodder Arnold Publication, London, 2005)Google Scholar
  42. H. Pasterkamp, S. Patel, G.R. Wodicka, Asymmetry of respiratory sounds and thoracic transmission. Med. Biol. Eng. Comput. 35(2), 103–106 (1997a)CrossRefGoogle Scholar
  43. H. Pasterkamp, S.S. Kraman, G.R. Wodicka, Respiratory sounds, advances beyond the stethoscope. Am. J. Respir. Crit. Care Med. 156(3), 974–987 (1997b)CrossRefGoogle Scholar
  44. Y. Peng, Z. Dai, H.A. Mansy, R.H. Sandler, R.A. Balk, T.J. Royston, Sound transmission in the chest under surface excitation: an experimental and computational study with diagnostic applications. Med. Biol. Eng. Comput. 52, 695–706 (2014)CrossRefGoogle Scholar
  45. T. Penzel, G. Amend, K. Meinzer, J.H. Peter, P. Wichert, MESAM: a heart rate and snoring recorder for detection of obstructive sleep apnea. Sleep 13(2), 175–182 (1990)Google Scholar
  46. J.R. Perez-Padilla, E. Slawinski, L.M. Difrancesco, R.R. Feige, J.E. Remmers, W.A. Whitelaw, Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am. Rev. Respir. Dis. 147(3), 635–644 (1993)CrossRefGoogle Scholar
  47. R.M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach. IEEE Press Series in Biomedical Engineering (Wiley Interscience, New York, 2002)Google Scholar
  48. M.B. Rappaport, H.B. Sprague, Physiologic and physical laws that govern auscultation, and their clinical application. The acoustic stethoscope and the electrical amplifying stethoscope and stethograph. Am. Heart J. 21(3), 257–318 (1941)CrossRefGoogle Scholar
  49. H. Rauscher, W. Popp, H. Zwick, Quantification of sleep disordered breathing by computerized analysis of oximetry, heart rate and snoring. Eur. Respir. J. 4(6), 655–659 (1991)Google Scholar
  50. D.A. Rice, Sound speed in pulmonary parenchyma. J. Appl. Physiol. 54(1), 304–308 (1983)Google Scholar
  51. T.D. Rossing, Springer Handbook of Acoustics (Springer, New York, 2007)Google Scholar
  52. B. Saletu, M. Saletu-Zyhlarz, What You Always Wanted to Know About the Sleep (in German: Was Sie schon immer über Schlaf wissen wollten). (Ueberreuter, Vienna, 2001)Google Scholar
  53. J. Schäfer, A simple procedure for quantitative and time coded detection of snoring sounds in apnea and snoring patients (in German: Ein einfaches Verfahren zur quantitativen und zeitcodierten Erfassung von Schnarchgeräuschen bei Apnoikern und Schnarchern). Laryngol. Rhinol. Otol. 67(9), 449–452 (1988)CrossRefGoogle Scholar
  54. J. Schäfer, Snoring, Sleep Apnea, and Upper Airways (in German: Schnarchen, Schlafapnoe und obere Luftwege) (Georg Thieme, Stuttgart, 1996)Google Scholar
  55. M. Sergi, M. Rizzi, A.L. Comi, O. Resta, P. Palma, A. De Stefano, D. Comi, Sleep apnea in moderate-severe obese patients. Sleep Breath. 3(2), 47–52 (1999)CrossRefGoogle Scholar
  56. F. Series, I. Marc, L. Atton, Comparison of snoring measured at home and during polysomnographic studies. Chest 103(6), 1769–1773 (1993)CrossRefGoogle Scholar
  57. S. Silbernagl, A. Despopoulos, Pocket-Atlas of Physiology (in German: Taschenatlas Physiologie) (Georg Thieme, Stuttgart, 2007)Google Scholar
  58. F. Trendelenburg, Introduction into Acoustics (in German: Einführung in die Akustik) (Springer, Berlin, 1961)Google Scholar
  59. I. Veit, Technical Acoustics (in German: Technische Akustik) (Vogel, Würzburg, 1996)Google Scholar
  60. T. Verse, W. Pirsig, B. Junge-Hülsing, B. Kroker, Validation of the POLY-MESAM seven-channel ambulatory recording unit. Chest 117(6), 1613–1618 (2000)CrossRefGoogle Scholar
  61. H.K. Walker, W.D. Hall, J.W. Hurst, Clinical Methods: The History, Physical, and Laboratory Examinations (Butterworth, Boston, 1990)Google Scholar
  62. P.D. Welsby, J.E. Earis, Some high pitched thoughts on chest examination. Postgrad. Med. J. 77, 617–620 (2001)CrossRefGoogle Scholar
  63. P.D. Welsby, G. Parry, D. Smith, The stethoscope: some preliminary investigations. Postgrad. Med. J. 79, 695–698 (2003)Google Scholar
  64. Wikipedia, Free encyclopedia (2010), http://en.wikipedia.org
  65. K. Wilson, R.A. Stoohs, T.F. Mulrooney, L.J. Johnson, C. Guilleminault, Z. Huang, The snoring spectrum: acoustic assessment of snoring sound intensity in 1139 individuals undergoing polysomnography. Chest 115, 762–770 (1999)CrossRefGoogle Scholar
  66. G.R. Wodicka, K.N. Stevens, H.L. Golub, E.G. Cravalho, D.C. Shannon, A model of acoustic transmission in the respiratory system. IEEE Trans. Biomed. Eng. 36(9), 925–934 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Head of research group ‘Biomedical Sensors’, Vienna University of Technology Institute of Electrodynamics, Microwave and Circuit EngineeringViennaAustria

Personalised recommendations