Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 652 Accesses

Abstract

One of the most common methods employed to tune the properties of a surface consists of the formation of a monomolecular layer of organic species, possessing a thickness of up to a few nanometers [1–13]. Molecules that form monolayers are normally more or less strongly adsorbed or even covalently bound to a surface. In fact, the adsorption of species on surfaces is a spontaneous phenomenon, since clean electrode surfaces are frequently thermodynamically unstable in a real environment, due to the presence of dangling bonds. Adsorption of molecules leading to mono- and multilayers reduces the overall energy of the system consisting of not interacting substrate and adsorbed species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandler D, Kraus–Ophir S (2011) J Solid State Electrochem 15:1535–1558

    CAS  Google Scholar 

  2. Vericat C, Vela ME, Benitez G, Carrob P, Salvarezza RC (2010) Chem Soc Rev 39:1805–1834

    CAS  Google Scholar 

  3. Di Benedetto SA, Facchetti A, Ratner MA, Marks TJ (2009) Adv Mater 21:1407–1433

    Google Scholar 

  4. Chen D, Li J (2006) Surf Sci Rep 61:445–463

    CAS  Google Scholar 

  5. Vericat C, Vela ME, Salvarezza RC (2005) Phys Chem Chem Phys 7:3258–3268

    CAS  Google Scholar 

  6. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169

    CAS  Google Scholar 

  7. Schreiber F (2000) Progr Surf Sci 65:151–256

    CAS  Google Scholar 

  8. Ulman A (1996) Chem Rev 96:1533–1554

    CAS  Google Scholar 

  9. Murray RW (1980) Acc Chem Res 13:135–141

    CAS  Google Scholar 

  10. Murray RW, Ewing AG, Durst RA (1987) Anal Chem 59:379–390

    Google Scholar 

  11. Fujihira M, Rubinstein I, Rusling JF (eds) (2007) Encyclopedia of electrochemistry, vol 10. Wiley–VCH, Weinheim

    Google Scholar 

  12. Barendrecht E (1990) J App Electrochem 10:175–185

    Google Scholar 

  13. Murray RW (ed) (1992) Molecular design of electrode surfaces. Wiley, New York

    Google Scholar 

  14. Bigelow WC, Pickett DL, Zisman WA (1946) J Colloid Interface Sci 1:513–538

    CAS  Google Scholar 

  15. Fernandes de Farias R (2009) Chemistry on modified oxide and phosphate surfaces: fundamentals and applications. Academic, Amsterdam

    Google Scholar 

  16. Finklea HO, Robinson LR, Blackburn A, Richter N, Allara DL, Bright T (1996) Langmuir 2:239–244

    Google Scholar 

  17. Wirde M, Gelius U (1999) Langmuir 15:6370–6378

    CAS  Google Scholar 

  18. Michota A, Kudelski A, Bukowska J (2000) Langmuir 16:10236–10242

    CAS  Google Scholar 

  19. Esaulov V, Canepa M, Pasquali L, Hamoudi H, Dablemont C, Terzi F, Stefano S, Seeber R, Datta D (2011) Langmuir 27:4713–4720

    Google Scholar 

  20. Pasquali L, Terzi F, Seeber R, Doyle BP, Nannarone S (2008) J Chem Phys 128:134711

    CAS  Google Scholar 

  21. Pasquali L, Terzi F, Zanardi C, Pigani L, Seeber R, Paolicelli G, Suturin SM, Mahne N, Nannarone S (2007) Surf Sci 601:1419–1427

    CAS  Google Scholar 

  22. Pasquali L, Terzi F, Zanardi C, Seeber R, Paolicelli G, Mahne N, Nannarone S (2007) J Phys 19:305020

    Google Scholar 

  23. Chehimi MM (ed) (2012) Aryl diazonium salts: new coupling agents in polymer and surface science. Wiley–VCH, Berlin

    Google Scholar 

  24. Belanger D, Pinson J (2011) Chem Soc Rev 40:3995–4048

    CAS  Google Scholar 

  25. Mahouche–Chergui S, Gam–Derouich S, Mangeney C, Chehimi MM (2011) Chem Soc Rev 40:4143–4166

    Google Scholar 

  26. Pinsona J, Podvorica F (2005) Chem Soc Rev 34:429–439

    Google Scholar 

  27. Uosaki K (2009) Chem Rec 9:199–209

    CAS  Google Scholar 

  28. Kadish KM, Smith KM (eds) (2000) The porphyrin handbook, vol 6. Academic, San Diego

    Google Scholar 

  29. Nyokong T, Bedioui F (2006) J Porphyrins Phthalocyanines 10:1101–1115

    CAS  Google Scholar 

  30. Kurzatkowska K, Shpakovsky D, Radecki J, Radeckaa H, Jingwei Z, Milaev E (2009) Talanta 78:126–131

    CAS  Google Scholar 

  31. Katsonis N, Vicario J, Kudernac T, Visser J, Pollard MM, Feringa BL (2006) J Am Chem Soc 128:15537–15541

    CAS  Google Scholar 

  32. Ozoemena KI, Nyokong T (2002) Electrochim Acta 47:4035–4043

    CAS  Google Scholar 

  33. Ozoemena KI, Nyokong T (2006) Talanta 67:162–168

    Google Scholar 

  34. Ozoemena KI, Nyokong T (2005) J Electroanal Chem 579:283–289

    CAS  Google Scholar 

  35. Ozoemena KI, Nyokong T (2006) Electrochim Acta 51:2669–2677

    CAS  Google Scholar 

  36. Gopakumar TG, Lackinger M, Hackert M, Muller F, Hietschold M (2004) J Phys Chem B 108:7839–7843

    CAS  Google Scholar 

  37. Pawin G, Wong KL, Kim D, Sun D, Bartels L, Hong S, Rahman TS, Carp R, Marsella M (2008) Angew Chem Int 47:8442–8445

    CAS  Google Scholar 

  38. Barlow SM, Raval R (2003) Surf Sci Rep 50:201–341

    CAS  Google Scholar 

  39. McCreery RL (2008) Chem Rev 108:2646–2687

    CAS  Google Scholar 

  40. McCreery RL (1991) Carbon electrodes: structural effects on electron transfer kinetics. In: Bard AJ (ed) Electroanalytical chemistry: a series of advances, vol 17. Marcel Dekker, New York, pp 221–374

    Google Scholar 

  41. Moffat TP (1999) Scanning tunneling microscopy studies of metal electrodes. In: Bard AJ, Rubenstein I (eds) Electroanalytical chemistry: a series of advances, vol 21. Marcel Dekker, New York, pp 211–316

    Google Scholar 

  42. Robinson KM, Robinson IK, O’Grady WE (1992) Surf Sci 262:387–394

    CAS  Google Scholar 

  43. Czanderna AW, Powell CJ, Madey TE (2002) Specimen handling, preparation, and treatments in surface characterization. Kluwer Academic Publishers, New York

    Google Scholar 

  44. Dieold U (2003) Surf Sci Rep 48:53–229

    Google Scholar 

  45. Terzi F, Pasquali L, Montecchi M, Nannarone S, Viinikanoja A, Aaritalo T, Salomaàki M, Lukkari J, Doyle BP, Seeber R (2011) J Phys Chem C 115:17836–17844

    CAS  Google Scholar 

  46. Pasquali L, Terzi F, Montecchi M, Doyle BP, Lukkari J, Zanfrognini B, Seeber R, Nannarone S (2009) J Electron Spectrosc Relat Phenom 172:114–119

    CAS  Google Scholar 

  47. Ibach H (2006) Physics of surfaces and interfaces. Springer, Berlin

    Google Scholar 

  48. Duwez AS (2004) J Electron Spectrosc 134:97–138

    CAS  Google Scholar 

  49. Kluth GJ, Carraro C, Maboudian R (1999) Phys Rev B 59:R10409–R10452

    Google Scholar 

  50. Freund HJ (1995) Phys Stat Sol B 192:407–440

    CAS  Google Scholar 

  51. Busca G (2006) The surface acidity and basicity of solid oxides and zeolites. In: Fierro JLG (ed) Metal oxides – chemistry and applications. CRC Press, Boca Raton, pp 247–318

    Google Scholar 

  52. Tao YT (1993) J Am Chem Soc 115:4350

    CAS  Google Scholar 

  53. Ohmann R, Levita G, Vitali L, De Vita A, Kern K (2011) ACS Nano 5:1360–1365

    CAS  Google Scholar 

  54. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) J Am Chem Soc 113:7152–7167

    CAS  Google Scholar 

  55. Pradeep T, Sandhyarani N (2002) Pure Appl Chem 74:1593–1607

    CAS  Google Scholar 

  56. Smith RK, Lewis PA, Weiss PS (2004) Progr Surf Sci 75:1–68

    CAS  Google Scholar 

  57. Elmorea DL, Chase DB, Liuc Y, Rabolt JF (2004) Vib Spectrom 34:37–45

    Google Scholar 

  58. Tao F, Bernasek SL (2007) Chem Rev 107:1408–1453

    CAS  Google Scholar 

  59. Thuo MM, Reus WF, Nijhuis CA, Barber JR, Kim C, Schulz MD, Whitesides GM (2011) J Am Chem Soc 133:2962–2975

    CAS  Google Scholar 

  60. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Coord Chem Rev 254:1769–1802

    CAS  Google Scholar 

  61. Hunter CA, Lawson KR, Perkins J, Urch CJJ (2001) Chem Soc Perkin Trans 5:651–669

    Google Scholar 

  62. Janiak C (2000) J Chem Soc Dalton Trans 8:3885–3896

    Google Scholar 

  63. Waters ML (2002) Curr Opin Chem Biol 6:736–741

    CAS  Google Scholar 

  64. Clegg RS, Hutchison JE (1999) J Am Chem Soc 121:5319–5327

    CAS  Google Scholar 

  65. Evans SD, Urankar E, Ulman A, Ferris N (1991) J Am Chem Soc 113:4121–4131

    CAS  Google Scholar 

  66. Ogawa K, Mino N, Tamura H, Hatada M (1990) Langmuir 6:1807–1809

    CAS  Google Scholar 

  67. Chang YC, Frank CW (1998) Langmuir 14:326–334

    Google Scholar 

  68. Wei L, Tiznado H, Liu G, Padmaja K, Lindsey JS, Zaera F, Bocian DF (2005) J Phys Chem B 109:23963–23971

    CAS  Google Scholar 

  69. Venkataramanan M, Pradeep T (2000) Anal Chem 72:5852–5856

    CAS  Google Scholar 

  70. Yamada R, Wano H, Uosaki K (2000) Langmuir 16:5523–5525

    CAS  Google Scholar 

  71. Norrod KL (1998) J Am Chem Soc 120:2656–2657

    CAS  Google Scholar 

  72. Schoenfisch MH, Pemberton JE (1998) J Am Chem Soc 120:4502–4513

    CAS  Google Scholar 

  73. Zhang Y, Terrill RH, Tanzer TA, Bohn PW (1998) J Am Chem Soc 120:2654–2655

    CAS  Google Scholar 

  74. Scholz F, López deLara González G, Machado de Carvalho L, Hilgemann M, Brainina KZ, Kahlert H, Jack RS, Minh DT (2007) Angew Chem Int 46:8079–8081

    CAS  Google Scholar 

  75. Haensch C, Hoeppener S, Schubert US (2010) Chem Soc Rev 39:2323–2334

    CAS  Google Scholar 

  76. Ma Z, Zaera F (2006) Surf Sci Rep 61:229–281

    CAS  Google Scholar 

  77. Sullivan TP, Huck WTS (2003) Eur J Org Chem 2003:17–29

    Google Scholar 

  78. Chechik V, Crooks RM, Stirling CJM (2000) Adv Mater 12:1161–1171

    CAS  Google Scholar 

  79. Barteau MA (1996) Chem Rev 96:1413–1430

    CAS  Google Scholar 

  80. Wolf MO, Fox MA (1995) J Am Chem Soc 117:1845–1846

    CAS  Google Scholar 

  81. Guo R, Song Y, Wang G, Murray RW (2005) J Am Chem Soc 127:2752–2757

    CAS  Google Scholar 

  82. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27–36

    CAS  Google Scholar 

  83. Hostetler MJ, Templeton AC, Murray RW (1999) Langmuir 15:3782–3789

    CAS  Google Scholar 

  84. Zanardi C, Terzi F, Seeber R, Baldoli C, Licandro E, Maiorana S (2012) Artif DNA: PNA XNA 3:80–87

    Google Scholar 

  85. Stranick SJ, Parikh AN, Tao YT, Allara DL, Weiss PS (1994) J Phys Chem 98:7636–7646, SJ

    CAS  Google Scholar 

  86. Stranick SJ, Atre SV, Parikh AN, Wood MC, Allara DL, Winograd N, Weiss PS (1996) Nanotechnology 7:438–442

    CAS  Google Scholar 

  87. Heeger AJ (2010) Chem Soc Rev 39:2354–2371

    CAS  Google Scholar 

  88. Inzelt G (2008) Conducting polymers – a new era in electrochemistry, monographs in electrochemistry. Springer–Verlag, Berlin

    Google Scholar 

  89. Peng ZQ, Dong SJ (2001) Langmuir 17:4904–4909

    CAS  Google Scholar 

  90. Cheng L, Bocarsly AB, Bernasek SL, Ramanarayanan TA (1997) Surf Sci 374:357–37216

    CAS  Google Scholar 

  91. Winther–Jensen B, Chen J, West K, Wallace G (2004) Macromolecules 37:5930–5935

    Google Scholar 

  92. Bein T (1996) Conjugated and conducting nanostructures in zeolites. In: Chon H, Woo SI, Park S–E (eds) Recent advances and new horizons in zeolite science and technology, vol 102. Elsevier, New York, pp 295–322

    Google Scholar 

  93. Ballav N, Biswas M (2004) Synth Met 142:309–315

    CAS  Google Scholar 

  94. Terzi F, Pasquali L, Seeber R (2013) Anal Bioanal Chem 405:1513–1535

    CAS  Google Scholar 

  95. Fleer GJ, Stuart MAC, Scheutjens JMHM (1993) Polymers at interfaces. Chapman & Hall, Cambridge

    Google Scholar 

  96. Farrokhpay S (2009) Adv Colloid Interface Sci 151:24–32

    CAS  Google Scholar 

  97. Fujimoto H, Nagashima U, Inokuchi H, Seki K, Cao Y, Nakahara H, Nakayama J, Hoshino M, Fukuda K (1990) J Chem Phys 92:4077–4092

    CAS  Google Scholar 

  98. Alberti A, Ballarin B, Guerra M, Macciantelli D, Mucci A, Parenti F, Schenetti L, Seeber R, Zanardi C (2003) Chem Phys Chem 4:1216–1225

    CAS  Google Scholar 

  99. Compagnini G, De Bonis A, Cataliotti RS, Marletta G (2000) PCCP 2:5298–5301

    CAS  Google Scholar 

  100. Zotti G, Vercelli B, Berlin A (2008) Acc Chem Res 41:1098–1109

    CAS  Google Scholar 

  101. Oçafrain M, Tran TK, Blanchard P, Lenfant S, Godey S, Vuillaume D, Roncali J (2008) Adv Funct Mater 18:2163–2171

    Google Scholar 

  102. Zotti G, Zecchin S, Vercelli B, Berlin A, Grimoldi S, Groenendaal L, Bertoncello R, Natali M (2005) Chem Mater 17:3681–3694

    CAS  Google Scholar 

  103. Berlin A, Zotti G, Schiavon G, Zecchin S (1998) J Am Chem Soc 120:13453–1346029

    CAS  Google Scholar 

  104. Ulgut B, Abruna HD (2008) Chem Rev 108:2721–2736

    CAS  Google Scholar 

  105. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Chem Rev 108:2737–2791

    CAS  Google Scholar 

  106. Wang W, Lee T, Reed MA (2003) Phys Rev B 68:035416

    Google Scholar 

  107. Tour JM, Jones LR II, Pearson DL, Lamba JJS, Burgin TP, Whitesides GM, Allara DL, Parikh JN, Atrer SV (1995) J Am Chem Soc 117:9529–9534

    CAS  Google Scholar 

  108. Choi SH, Kim B, Frisbie CD (2008) Science 320:1482

    CAS  Google Scholar 

  109. Finklea HO (1996) Electrochemistry of organized monolayers of thiols and related molecules on electrodes. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 109–322

    Google Scholar 

  110. Mirsky VM (2002) TrAC Trends Anal Chem Tr 21:439–450

    CAS  Google Scholar 

  111. Herzog G, Arrigan DWM (2003) Electroanalysis 15:1302–1306

    CAS  Google Scholar 

  112. Ozoemena K, Westbroek P, Nyokong T (2001) Electrochem Comm 3:529–534

    CAS  Google Scholar 

  113. Li M, Li YT, Li DW, Long YT (2012) Anal Chim Acta 734:31–44

    CAS  Google Scholar 

  114. Metters JP, Kadara RO, Banks CE (2011) Analyst 136:1067–1076

    CAS  Google Scholar 

  115. Dominguez–Renedo O, Alonso–Lomillo MA, Arcos–Martinez MJ (2007) Talanta 73:202–219

    Google Scholar 

  116. Kong Y, Chen H, Wang Y, Soper SA (2006) Electrophoresis 27:2940–2950

    CAS  Google Scholar 

  117. Zimmerman WB (2011) Chem Eng Sci 66:1412–1425

    CAS  Google Scholar 

  118. Pumera M, Merkoc A¸ Alegret S (2006) TrAC Trends Anal Chem 25:219–235

    CAS  Google Scholar 

  119. Wang J (2005) Electroanalysis 17:1135–1140

    Google Scholar 

  120. Jensen LG, Nielsen KA, Breton T, Sessler JL, Jeppesen JO, Levillain E, Sanguinet L (2009) Chem Eur J 15:8128–8133

    CAS  Google Scholar 

  121. Wang J, Wu H, Angnes L (1993) Anal Chem 65:1893–1896

    CAS  Google Scholar 

  122. Shervedani RK, Farahbakhsh A, Bagherzadeh M (2007) Anal Chim Acta 587:254–262

    CAS  Google Scholar 

  123. Malel E, JK Sinha JK, Zawisza I, Wittstock G, Mandler D (2008) Electrochim Acta 53:6753–6758

    CAS  Google Scholar 

  124. Shervedani RK, Bagherzadeh M, Mozaffari SA (2006) Sens Act B 115:614–621

    CAS  Google Scholar 

  125. Codognoto L, Winter E, Paschoal JAR, Suffredini HB, Cabral MF, Machado SAS, Rath S (2007) Talanta 72:427–433

    CAS  Google Scholar 

  126. Huang YJ, Jiang YB, Fossey JS, Jamesa TD, Marken F (2010) J Mater Chem 20:8305–8310

    CAS  Google Scholar 

  127. Shervedani RK, Bagherzadeh M (2008) Electroanalysis 20:550–557

    CAS  Google Scholar 

  128. Perry M, Li Q, Kennedy RT (2009) Anal Chim Acta 653:1–22

    CAS  Google Scholar 

  129. Bozica RG, West AC, Levicky R (2008) Sens Act B 133:509–515

    Google Scholar 

  130. Mashazi PN, Ozoemena KI, Nyokong T (2006) Electrochim Acta 52:177–186

    CAS  Google Scholar 

  131. Retna–Raj C, Tokuda K (2001) Bioelectrochemistry 53:183–191

    Google Scholar 

  132. Mas–Torrent M, Crivillers N, Rovira C, Veciana J (2012) Chem Rev 112:2506–2527

    Google Scholar 

  133. Choi SJ, Choi BG, Park SM (2002) Anal Chem 74:1998–2002

    CAS  Google Scholar 

  134. Dionex. http://www.dionex.com. Accessed 15 Jul 2014

  135. Chaki NK, Vijayamohanan K (2002) Biosens Bioelectron 17:1–12

    CAS  Google Scholar 

  136. Gooding JJ, Daewish N (2012) Chem Rec 12:92–105

    CAS  Google Scholar 

  137. Borgmann S, Schulte A, Neugebauer S, Schuhmann W (2011) Amperometric biosensors. In: Alkire RC, Kolb DM, Lipkowski J (eds) Advances in electrochemical science and engineering. Wiley-VCH, Weinheim, pp 1–83

    Google Scholar 

  138. Arya SK, Solanki PR, Datta M, Malhotra BD (2009) Biosens Bioelectron 24:2810–2817

    CAS  Google Scholar 

  139. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Chem Rev 112:2739–2779

    CAS  Google Scholar 

  140. Zhou Y, Chiu C-W, Liang H (2012) Sensors 12:15036–15062

    CAS  Google Scholar 

  141. Radi AE (2011) Int J Electrochem 863196 Samanta D, Sarkar A (2011) Chem Soc Rev 40: 2567–2592

    Google Scholar 

  142. Ronkainen NJ, Halsall HB, Heineman WR (2010) Chem Soc Rev 39:1747–1763

    CAS  Google Scholar 

  143. Debasis S, Sarkar A (2011) Chem Soc Rev 40:2567–2592

    Google Scholar 

  144. Ley C, Holtmann D, Mangold K-M, Schradera J (2011) Colloids Surf B 88:539–551

    CAS  Google Scholar 

  145. Cederquist KB, Keating CD (2009) ACS Nano 3:256–260

    CAS  Google Scholar 

  146. Zanardi C, Baldoli C, Licandro E, Terzi F, Seeber R (2012) J Nanopart Res 14:1148–1159

    Google Scholar 

  147. Benson DE, Conrad DW, de Lorimier RM, Trammell SA, Hellinga HW (2001) Science 293:1641

    CAS  Google Scholar 

  148. Yang W, Wang J, Zhao S, Sun Y, Sun C (2006) Electrochem Commun 8:665–672

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seeber, R., Terzi, F., Zanardi, C. (2014). Monolayers. In: Functional Materials in Amperometric Sensing. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45103-8_5

Download citation

Publish with us

Policies and ethics