Advertisement

Redox Polymers and Metallopolymers

  • Renato Seeber
  • Fabio Terzi
  • Chiara Zanardi
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

Redox polymers (RPs) constitute a class of electrically conductive macromolecules covalently bound to a number of organic or inorganic redox centers typically equal to one another. Nitro-substituted styrene, quinone, viologen, and dopamine residues exhibit reversible redox behavior and should be considered pioneering organic redox centers in the frame of RPs. On the other hand, the redox centers of RPs more often consist of metal ions surrounded by different sets of co-ordinating ligands, thus opening, in principle, to a huge variety of different derivatives: various complexes of Ir, Co, Re, Ru, and Os have been proposed. Significant examples of RPs used in electroanalytical applications are sketched in Fig. 3.1.

Keywords

Metal Center Prussian Blue Schiff Base Ligand Redox Mediation Redox Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Murray R (1992) Molecular design of electrode surfaces. In: Saunders WU Jr (ed) Techniques of chemistry series. Wiley, New YorkGoogle Scholar
  2. 2.
    Lyons MEG (1994) Charge percolation in conducting polymers. In: Lyons MEG (ed) Electroactive polymer electrochemistry, part 1: fundamentals. Plenum Press, New York, pp 1–235Google Scholar
  3. 3.
    Oyama N, Anson FC (1980) Anal Chem 52:1192–1198Google Scholar
  4. 4.
    Oyama N, Ohsaka T, Okajima T (1986) Anal Chem 58:979–981Google Scholar
  5. 5.
    Sayen S, Etienne M, Bessie¡re J, Walcarius A (2002) Electroanalysis 14:1521–1525Google Scholar
  6. 6.
    Merz A, Bard AJ (1978) J Am Chem Soc 100:3222–3223Google Scholar
  7. 7.
    van de Mark MR, Miller LL (1978) J Am Chem Soc 100:3223–3225Google Scholar
  8. 8.
    Denisevich P, Abruna HD, Leidner CR, Meyer TJ, Murray RW (1982) Inorg Chem 21:2153–2161Google Scholar
  9. 9.
    Oyama N, Anson FC (1979) J Am Chem Soc 101:739–741Google Scholar
  10. 10.
    Oyama N, Anson FC (1979) J Am Chem Soc 101:3450–3456Google Scholar
  11. 11.
    Scott NS, Oyama N, Anson FC (1980) J Electroanal Chem 110:303–310Google Scholar
  12. 12.
    Oyama N, Anson FC (1980) J Electrochem Soc 127:640–647Google Scholar
  13. 13.
    Calvert JM, Schmehl RH, Sullivan BP, Facci JS, Meyer TJ, Murray RM (1983) Inorg Chem 22:2151–2162Google Scholar
  14. 14.
    Murray RW (1980) Acc Chem Res 13:135–141Google Scholar
  15. 15.
    Murray RW (1984) Chemically modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Marcel Dekker, New York, pp 191–368Google Scholar
  16. 16.
    Lyons MEG (ed) (1996) Electroactive polymer electrochemistry, part 2: methods and applications. Plenum Press, New YorkGoogle Scholar
  17. 17.
    Andrieux CP, Saveant JM (1978) J Electroanal Chem 93:163–168Google Scholar
  18. 18.
    Sahin OG, Gulce H, Gulce A (2013) J Electroanal Chem 690:1–7Google Scholar
  19. 19.
    Kuralay F, Erdem A, Abaci S, Ozyörük H, Yildiz A (2008) Electroanalysis 23:2563–2570Google Scholar
  20. 20.
    Lui A, Kashiwagi Y, Anzai J (2003) Electroanalysis 15:1139–1142Google Scholar
  21. 21.
    Celebi MS, Özyörük H, Yıldız A, Abaci S (2009) Talanta 78:405–409Google Scholar
  22. 22.
    Kelly DM, Vos JG (1996) Osmium and rhutenium poly(pyridyl) redox polymers as electrode coatings. In: Lyons MEG (ed) Electroactive polymer electrochemistry, part 2: methods and applications. Plenum Press, New York, pp 173–232Google Scholar
  23. 23.
    Doherty AP, Vos JG (1997) Anal Chim Acta 344:159–166Google Scholar
  24. 24.
    Stanley MA, Maxwell J, Forrestal M, Doherty AP, MacCraith BD, Diamond D, Vos JG (1994) Anal Chim Acta 299:81–90Google Scholar
  25. 25.
    Fei J, Wu K, Wu Y, Hu S (2004) J Solid State Electrochem 8:316–321Google Scholar
  26. 26.
    Ju HX, Leech D (1997) Anal Chim Acta 345:1–58Google Scholar
  27. 27.
    Fei J, Luo L, Hu S, Gao Z (2004) Electroanalysis 16:319–322Google Scholar
  28. 28.
    Hogan CF, Forster RJ (1999) Anal Chim Acta 396:13–21Google Scholar
  29. 29.
    Gao Z (2007) Sens Actuators B Chem 123:293–298Google Scholar
  30. 30.
    Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T (2010) Sens Actuators B Chem 144:92–98Google Scholar
  31. 31.
    Qian L, Gao Q, Song Y, Li Z, Yang X (2005) Sens Actuators B Chem 107:303–310Google Scholar
  32. 32.
    Havens N, Trihn P, Kim D, Luna M, Wanekaya AK, Mugweru A (2010) Electrochim Acta 55:2186–2190Google Scholar
  33. 33.
    Fei J, Hu S, Shiu K–K (2011) J Solid State Electrochem 15:519–523Google Scholar
  34. 34.
    Teker MS, Tamer U, Pekmez NO (2012) Synth Met 162:924–930Google Scholar
  35. 35.
    Neff VD (1978) J Electrochem Soc 125:886–887Google Scholar
  36. 36.
    Keggin JF, Miles FD (1936) Nature 137:577–578Google Scholar
  37. 37.
    Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389–407Google Scholar
  38. 38.
    Karyakin AA (2001) Electroanalysis 13:813–819Google Scholar
  39. 39.
    Itaya K, Akahoshi H, Toshima S (1982) J Electrochem Soc 129:1498–1500Google Scholar
  40. 40.
    Itaya K, Uchida I, Neff VD (1986) Acc Chem Res 19:162–168Google Scholar
  41. 41.
    Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225–1231Google Scholar
  42. 42.
    Moscone D, D’Ottavi D, Compagnone D, Palleschi G, Amine A (2001) Anal Chem 73:2529–2535Google Scholar
  43. 43.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Biosens Bioelectron 18:165–174Google Scholar
  44. 44.
    Jaffari SA, Pickup JC (1996) Biosens Bioelectron 11:1167–1175Google Scholar
  45. 45.
    Jaffari SA, Turner APF (1997) Biosens Bioelectron 12:1–9Google Scholar
  46. 46.
    Zhou J, Wang E (1992) Talanta 39:235–242Google Scholar
  47. 47.
    Karyakin AA, Karyakina EE, Gorton L (1996) Talanta 43:1597–1606Google Scholar
  48. 48.
    Karyakin AA, Gitelmacher O, Karyakina EE (1994) Anal Lett 27:2861–2869Google Scholar
  49. 49.
    Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Anal Chem 67:2419–2423Google Scholar
  50. 50.
    Karyakin AA, Karyakina EE (1999) Sens Actuators B Chem 57:268–273Google Scholar
  51. 51.
    Karyakin AA, Karyakina EE, Gorton L (2000) Anal Chem 72:1720–1723Google Scholar
  52. 52.
    Ricci F, Caprio F, Poscia A, Valgimigli F, Messeri D, Lepori E, Dall’Oglio G, Palleschi G, Moscone D (2007) Biosens Bioelectron 22:2032–2039Google Scholar
  53. 53.
    Stilwell D, Park KH, Miles MH (1992) J Appl Electrochem 22:325–331Google Scholar
  54. 54.
    Balmaseda J, Reguera E, Rodríguez-Hernández J, Reguera L, Autie M (2006) Micropor Mesopor Mat 96:222–236Google Scholar
  55. 55.
    de Mattos IL, Gorton L, Laurell T, Malinauskas A, Karyakin A (2000) Talanta 52:791–799Google Scholar
  56. 56.
    Lin MS, Jan BI (1997) Electroanalysis 9:340–344Google Scholar
  57. 57.
    Garjonyte R, Malinauskas A (1998) Sens Actuators B Chem 46:236–241Google Scholar
  58. 58.
    Sitnikova NA, Komkova MA, Khomyakova IV, Karyakina EE, Karyakin AA (2014) Anal Chem 86:4131–4134Google Scholar
  59. 59.
    Narayanan SS, Scholz F (1999) Electroanalysis 11:465–469Google Scholar
  60. 60.
    Xun Z, Cai C, Xing W, Lu T (2003) J Electroanal Chem 545:19–27Google Scholar
  61. 61.
    Pauliukaite R, Ghica ME, Brett CMA (2005) Anal Bioanal Chem 381:972–978Google Scholar
  62. 62.
    Tsai TH, Chen TW, Chen SM (2010) Electroanalysis 14:1655–1662Google Scholar
  63. 63.
    Liu SQ, Chen HY (2002) J Electroanal Chem 528:190–195Google Scholar
  64. 64.
    Wu P, Shi Y, Cai C (2006) J Solid State Electrochem 10:270–276Google Scholar
  65. 65.
    Sheng QL, Yu H, Sheng JB (2007) Electrochim Acta 52:4506–4512Google Scholar
  66. 66.
    Liu Y, Yang Z, Zhong Y, Yu J (2010) Appl Surf Sci 256:3148–3154Google Scholar
  67. 67.
    Roncali JJ (1999) Mater Chem 9:1875–1893Google Scholar
  68. 68.
    Pickup PG (1999) J Mater Chem 9:1641–1653Google Scholar
  69. 69.
    Holliday BJ, Swager TM (2005) Chem Commun 2005:23–36Google Scholar
  70. 70.
    Higgins SJ (1997) Chem Soc Rev 26:247–257Google Scholar
  71. 71.
    Kingsborough RP, Swager TM (1999) Transition metals in polymeric conjugated organic frameworks. In: Karlin KD (ed) Progress in inorganic chemistry, vol 48. Wiley, New York, pp 123–231Google Scholar
  72. 72.
    Wolf MO (2001) Adv Mat 13:545–553Google Scholar
  73. 73.
    Wolf MO (2006) J Inorg Organomet Polym Mater 16:189–199Google Scholar
  74. 74.
    Weder CJ (2006) J Inorg Organomet Polym Mater 16:101–113Google Scholar
  75. 75.
    Moorlag C, Clot O, Zhu Y, Wolf MO (2004) Macromol Symp 209:133–139Google Scholar
  76. 76.
    Vorotyntsev MA, Vasilyeva SV (2008) Adv Colloid Interface Sci 139:97–149Google Scholar
  77. 77.
    Cameron CG, McLean BJ, Pickup PG (2003) Macromol Symp 196:165–171Google Scholar
  78. 78.
    Stott TL, Wolf MO (2003) Coord Chem Rev 246:89–101Google Scholar
  79. 79.
    Whittel GR, Manners I (2007) Adv Mat 19:3439–3468Google Scholar
  80. 80.
    Friebe C, Hager MD, Winter A, Schubert US (2012) Adv Mat 24:332–345Google Scholar
  81. 81.
    Bredas JL, Street GB (1985) Acc Chem Res 18:309–315Google Scholar
  82. 82.
    Ballarin B, Masiero S, Seeber R, Tonelli D (1998) J Electroanal Chem 449:173–180Google Scholar
  83. 83.
    Zotti G, Schiavon G, Zecchin S, Berlin A, Canavesi A, Pagani G (1997) Synth Met 84:239–240Google Scholar
  84. 84.
    Zotti G, Schiavon G, Zecchin S, Berlin A, Pagani G, Canavesi A (1996) Synth Met 76:255–258Google Scholar
  85. 85.
    Zanardi C, Terzi F, Pigani L, Seeber R (2009) Electrode coatings consisting of polythiophene–based composites containing metal centres. In: Lechkov M, Prandhzeva S (eds) Encyclopedia of polymer composites: properties, performance and applications. Nova, New York, pp 1–74Google Scholar
  86. 86.
    Zhu SS, Kingsborough RP, Swager TM (1999) J Mater Chem 9:2123–2131Google Scholar
  87. 87.
    Yuasa M, Oyaizu K, Yamaguchi A, Ishikawa M, Eguchi K, Kobayashi T, Toyoda Y, Tsutsui S (2005) Polym Adv Technol 16:616–621Google Scholar
  88. 88.
    Schäferling M, Bäuerle P (2004) J Mater Chem 14:1132–1141Google Scholar
  89. 89.
    Bedioui F, Devynck J, Bied–Charreton C (1995) Acc Chem Res 28:30–36Google Scholar
  90. 90.
    Scanu R, Manca R, Zucca A, Sanna G, Spano N, Seeber R, Zanardi C, Pilo MI (2013) Polyhedron 49:24–28Google Scholar
  91. 91.
    Chardon–Noblat S, Deronzier A, Zsoldos D, Ziessel R, Haukka M, Pakkanen T, Venӓlӓlainen T (1996) J Chem Soc Dalton Trans 1996:2581–2583Google Scholar
  92. 92.
    Chardon–Noblat S, Deronzier A, Ziessel R, Zsoldos D (1998) J Electroanal Chem 444:253–260Google Scholar
  93. 93.
    MacLean BJ, Pickup PG (2001) J Mater Chem 11:1357–1363Google Scholar
  94. 94.
    Cameron CG, Pittman TJ, Pickup PG (2001) J Phys Chem B 105:8838–8844Google Scholar
  95. 95.
    Wolf MO, Wrighton SM (1994) Chem Mater 6:1526–1533Google Scholar
  96. 96.
    Senel M (2011) Synth Met 161:1861–1868Google Scholar
  97. 97.
    Korri–Youssoufi H, Makrouf B (2002) Anal Chim Acta 469:85–92Google Scholar
  98. 98.
    Le H–QA, Chebil S, Makrouf B, Dauriat–Dorizon H, Mandrand B, Korri–Youssoufi H (2010) Talanta 81:1250–1257Google Scholar
  99. 99.
    Ion A, Ion I, Popescu A, Ungureanu M, Moutet J–C, Saint–Aman E (1997) Adv Mat 9:711–713Google Scholar
  100. 100.
    Ion A, Moutet J–C, Pailleret A, Popescu A, Saint–Aman E, Siebert E, Ungureanu EM (1999) J Electroanal Chem 464:24–30Google Scholar
  101. 101.
    Ion A, Ion I, Moutet J–C, Pailleret A, Popescu A, Saint–Aman E, Ungureanu EM, Siebert E, Ziessel R (1999) Sens Actuators B Chem 59:118–122Google Scholar
  102. 102.
    Chen J, Too CO, Wallace GG, Swiegers GF, Skelton BW, White AH (2002) Electrochim Acta 47:4227–4238Google Scholar
  103. 103.
    Byrne PD, Mueller P, Swager TM (2006) Langmuir 22:10596–10604Google Scholar
  104. 104.
    Roncali J (2004) J Mater Chem 14:421–427Google Scholar
  105. 105.
    Cosnier S, Galland B, Gondran C, Le Pellec A (1998) Electroanalysis 10:808–813Google Scholar
  106. 106.
    Reiter S, Habermueller K, Shuhmann W (2001) Sens Actuators B Chem 79:150–156Google Scholar
  107. 107.
    Gajovic N, Habemüller K, Wrasinke A, Schuhmann W, Scheller FW (1999) Electroanalysis 11:1377–1383Google Scholar
  108. 108.
    Foster K, McCormac T (2006) Electroanalysis 18:10097–11104Google Scholar
  109. 109.
    Zhu SS, Swager TM (1997) J Am Chem Soc 119:12568–12577Google Scholar
  110. 110.
    Zhu XJ, Holliday BJ (2010) Macromol Rapid Commun 31:904–909Google Scholar
  111. 111.
    Zotti G, Zecchin S, Schiavon G, Berlin (2001) J Electroanal Chem 506:106–114Google Scholar
  112. 112.
    Vidal P–L, Divisia–Blohorn B, Bidan G, Hazemann J–L, Sauvage J–P (2000) Chem Eur J 6:1663–1673Google Scholar
  113. 113.
    Capdevielle P, Maumy M, Audebert P, Plaza B (1994) New J Chem 18:519–524Google Scholar
  114. 114.
    Dahm CE, Peters DG, Simonet J (1996) J Electroanal Chem 410:163–171Google Scholar
  115. 115.
    Vilas–Boas M, Freire C, de Castro B, Christensen PA, Hillman AR (1997) Inorg Chem 36:4919–4929Google Scholar
  116. 116.
    Martins M, Vilas–Boas M, de Castro B, Hillman AR, Freire C (2005) Electrochim Acta 51:304–314Google Scholar
  117. 117.
    Mao L, Yamamoto K, Zhou W, Jin L (2000) Electroanalysis 12:72–77Google Scholar
  118. 118.
    Fonseca J, Tedim J, Biernacki K, Magalhaes AL, Gurman SJ, Freire C, Hillman AR (2010) Electrochim Acta 55:7726–7736Google Scholar
  119. 119.
    Reddinger JL, Reynolds JR (1998) Chem Mater 10:1236–1243Google Scholar
  120. 120.
    Reddinger JL, Reynolds JR (1998) Chem Mater 10:3–5Google Scholar
  121. 121.
    Tedim J, Biernacki K, Fonseca J, Patricio S, Carneiro A, Megalhaes AL, Gurman SJ, Freire C, Hillman AR (2013) J Electroanal Chem 688:308–319Google Scholar
  122. 122.
    Malinski T (2000) Porphyrine–based electrochemical sensors. In: Kadish KM, Smith KM, Guilard R (eds) The porphirin handbook, vol 6. Acad Press, Amsterdam/Boston/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo, pp 231–256Google Scholar
  123. 123.
    White BA, Murray RW (1987) J Am Chem Soc 109:2576–2581Google Scholar
  124. 124.
    Bettelheim A, Ozer D, Harth R, Murray RW (1989) J Electroanal Chem 26:93–108Google Scholar
  125. 125.
    Bruti E, Giannetto M, Mori G, Seeber R (1999) Electroanalysis 11:565–572Google Scholar
  126. 126.
    Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383–3396Google Scholar
  127. 127.
    Bedioui F, Devynk J, Bied–Charreton C (1995) Acc Chem Rev 28:30–36Google Scholar
  128. 128.
    Bettelheim S, White BA, Raybuck SA, Murray RW (1987) Inorg Chem 26:1009–1017Google Scholar
  129. 129.
    Ballarin B, Seeber R, Tassi L, Tonelli D (2000) Synth Met 114:279–285Google Scholar
  130. 130.
    Schäferling M, Bäuerle P (2001) Synth Met 119:289–290Google Scholar
  131. 131.
    Carvalho de Medeiros MA, Gorgy K, Deronzier A, Cosnier S (2008) Mat Sci Eng C-Bio S 28:731–738Google Scholar
  132. 132.
    Diab N, Schuhmann W (2001) Electrochim Acta 47:265–273Google Scholar
  133. 133.
    Diab N, Oni J, Schulte A, Radtke I, Boechl A, Schuhmann W (2003) Talanta 61:43–51Google Scholar
  134. 134.
    Carballo R, Campo Dall’Orto V, Lo Balbo A, Rezzano I (2003) Sens Actuators B Chem 88:155–161Google Scholar
  135. 135.
    Kang T–F, Shen G–L, Yu R_Q (1997) Anal Chim Acta 356:245–251Google Scholar
  136. 136.
    Sandoval Cortés J, Gutiérrez Granados S, Alatorre Ordaz A, López Jiménez JA, Griveau S, Bedioui F (2007) Electroanalysis 19:61–64Google Scholar
  137. 137.
    Rodrigues NP, Obirai J, Nyokong T, Bedioui F (2005) Electroanalysis 17:186–190Google Scholar
  138. 138.
    Krompiec M, Krompiec S, Grudzka I, Filapek M, Skorla L, Flak T, Lapkowski M (2011) Electrochim Acta 56:6824–6830Google Scholar
  139. 139.
    Higgins SJ, Pounds TJ, Christensen PA (2001) J Mater Chem 11:2253–2261Google Scholar
  140. 140.
    Mouffouk F, Demetriou A, Higgins SJ, Nichols RJ (2006) Inorg Chim Acta 359:3491–3496Google Scholar
  141. 141.
    Kean CL, Pickup PG (2001) Chem Commun 2001:815–816Google Scholar
  142. 142.
    Pozo–Gonzalo C, Berridge R, Skabara PJ, Cerrada E, Laguna M, Coles SJ, Hursthouse MB (2002) Chem Commun 2002:2408–2409Google Scholar
  143. 143.
    Anjos T, Roberts–Bleming SJ, Charlton A, Robertson N, Mount AR, Coles SJ, Hursthouse MB, Kalajia M, Murphy PJ (2008) J Mater Chem 18:475–483Google Scholar
  144. 144.
    Skabara PJ, Pozo–Gonzalo C, Lardies Miazza N, Laguna M, Cerrada E, Luquin A, Gonzalez B, Coles SJ, Hursthouse MB, Harrington RW, Clegg W (2008) J Chem Soc Dalton Trans 2008:3070–3079Google Scholar
  145. 145.
    Clot O, Wolf MO, Patrick BO (2000) J Am Chem Soc 122:10456–10457Google Scholar
  146. 146.
    Clot O, Wolf MO, Patrick BO (2001) J Am Chem Soc 123:9963–9973Google Scholar
  147. 147.
    Higgins TB, Mirkin CA (1998) Chem Mater 10:1589–1595Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Renato Seeber
    • 1
  • Fabio Terzi
    • 1
  • Chiara Zanardi
    • 1
  1. 1.Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations