Skip to main content

Design, Fabrication, and Optoelectronic Performance of Organic Building Blocks for Integrated Nanophotonic Devices

  • Chapter
  • First Online:
Organic Nanophotonics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1209 Accesses

Abstract

One-dimensional (1D) nanostructures have been used extensively to fabricate photonic elements for optical information processing due to the huge advantages over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications as they combine the properties of plastics with broad spectral tunability, high performance, easy fabrication, as well as low cost. Their outstanding compatibility allows for organic composite structures which consist of two or more kinds of materials, showing great superiorities to single-component materials due to the introduced interactions among multiple constituents. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and morphology, which offsets the intrinsic deficiencies of individual material. In the mean time, the strong exciton–photon coupling and exciton–exciton interaction impart the excellent confinement of photons in organic microstructures; thus, light can be manipulated according to our intention to realize various functions. These collective properties indicate a potential utility of organic heterogeneous material for photonic integrated circuitry. Herein, we focus on the 1D organic crystalline composite structures, with special emphasis on the novel design, controllable construction, diverse properties, as well as wide applications as isolated photonic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Zutic, M. Fuhrer, Spintronics: A path to spin logic. Nature Phys. 1(2), 85–86 (2005)

    Article  Google Scholar 

  2. B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta, Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5(4), 266–270 (2010)

    Article  Google Scholar 

  3. B. Wang, R.I. Kitney, N. Joly, M. Buck, Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 508 (2011)

    Article  Google Scholar 

  4. Y. Zhang, Y. Chen, X. Chen, Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate. Appl. Phys. Lett. 99(16), 161113–161117 (2011)

    Article  Google Scholar 

  5. P. Yang, R. Yan, M. Fardy, Semiconductor nanowire: What’s next? Nano Lett. 10(5), 1529–1536 (2010)

    Article  Google Scholar 

  6. H.J. Caulfield, S. Dolev, Why future supercomputing requires optics. Nat. Photon 4(5), 261–263 (2010)

    Article  Google Scholar 

  7. R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photon 3(10), 569–576 (2009)

    Article  Google Scholar 

  8. S. Kéna-Cohen, M. Davanço, S.R. Forrest, Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101(11), 116401 (2008)

    Article  Google Scholar 

  9. K. Takazawa, J. Inoue, K. Mitsuishi, T. Takamasu, Fraction of a millimeter propagation of exciton polaritons in photoexcited nanofibers of organic dye. Phys. Rev. Lett. 105(6), 067401 (2010)

    Article  Google Scholar 

  10. D. Pile, S. Forrest, Organic polariton laser. Nat. Photon 4(6), 402 (2010)

    Article  Google Scholar 

  11. R. Kirchain, L. Kimerling, A roadmap for nanophotonics. Nat. Photon 1(6), 303 (2007)

    Article  Google Scholar 

  12. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9(10), 18–27 (2006)

    Article  Google Scholar 

  13. Q.H. Cui, Y.S. Zhao, J. Yao, Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers. J. Mater. Chem. 22(10), 4136–4140 (2012)

    Article  Google Scholar 

  14. C. Zhang, Y.S. Zhao, J. Yao, Optical waveguides at micro/nanoscale based on functional small organic molecules. Phys. Chem. Chem. Phys. 13(20), 9060–9073 (2011)

    Article  Google Scholar 

  15. J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106(12), 5028–5048 (2006)

    Article  Google Scholar 

  16. A.L. Briseno, T.W. Holcombe, A.I. Boukai, E.C. Garnett, S.W. Shelton, J.J.M. Fréchet, P. Yang, Oligo- and polythiophene/ZnO hybrid nanowire solar cells. Nano Lett. 10(1), 334–340 (2009)

    Article  Google Scholar 

  17. A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J.D. Joannopoulos, Y. Fink, All-in-fiber chemical sensing. Adv. Mater. 24(45), 6005–6009 (2012)

    Article  Google Scholar 

  18. Y.S. Zhao, J.J. Xu, A.D. Peng, H.B. Fu, Y. Ma, L. Jiang, J. Yao, Optical waveguide based on crystalline organic microtubes and microrods. Angew. Chem. Int. Ed. 47(38), 7301–7305 (2008)

    Article  Google Scholar 

  19. Y.S. Zhao, H.B. Fu, A.D. Peng, Y. Ma, Q. Liao, J.N. Yao, Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res. 43(3), 409–418 (2010)

    Article  Google Scholar 

  20. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  Google Scholar 

  21. Y.L. Yan, C. Zhang, J.N. Yao, Y.S. Zhao, Recent advances in organic one-dimensional composite materials: Design, construction, and photonic elements for information processing. Adv. Mater. 25(27), 3627–3638 (2013)

    Article  Google Scholar 

  22. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)

    Article  Google Scholar 

  23. C. Zhang, C.-L. Zou, Y. Yan, R. Hao, F.-W. Sun, Z.-F. Han, Y.S. Zhao, J. Yao, Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc. 133(19), 7276–7279 (2011)

    Article  Google Scholar 

  24. Y.S. Zhao, A.D. Peng, H.B. Fu, Y. Ma, J.N. Yao, Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater. 20(9), 1661–1665 (2008)

    Article  Google Scholar 

  25. J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu, Q. Yang, Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Adv. Mater. 25(6), 833–837 (2013)

    Article  Google Scholar 

  26. S. Kena Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon 4(6), 371–375 (2010)

    Article  Google Scholar 

  27. L. Cerdan, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, I. Garcia-Moreno, FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photon 6(9), 621–626 (2012)

    Article  Google Scholar 

  28. J. Xu, L. Ma, P. Guo, X. Zhuang, X. Zhu, W. Hu, X. Duan, A. Pan, Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012)

    Article  Google Scholar 

  29. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 65(9), 3610–3616 (1989)

    Article  Google Scholar 

  30. T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437(1–2), 55–75 (1948)

    Article  Google Scholar 

  31. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459(7244), 234–238 (2009)

    Article  Google Scholar 

  32. Y.S. Zhao, H. Zhong, Q. Pei, Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection. Phys. Chem. Chem. Phys. 10(14), 1848–1851 (2008)

    Article  Google Scholar 

  33. Y. Lei, Q. Liao, H. Fu, J. Yao, Orange−blue−orange triblock one-dimensional heterostructures of organic microrods for white-light emission. J. Am. Chem. Soc. 132(6), 1742–1743 (2010)

    Article  Google Scholar 

  34. Y.S. Zhao, H.B. Fu, F.Q. Hu, A.D. Peng, W.S. Yang, J. Yao, Tunable emission from binary organic one-dimensional nanomaterials: An alternative approach to white-light emission. Adv. Mater. 20(1), 79–83 (2008)

    Article  Google Scholar 

  35. J.Y. Zheng, C. Zhang, Y.S. Zhao, J. Yao, Detection of chemical vapors with tunable emission of binary organic nanobelts. Phys. Chem. Chem. Phys. 12(40), 12935–12938 (2010)

    Article  Google Scholar 

  36. R.R. Islangulov, J. Lott, C. Weder, F.N. Castellano, Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129(42), 12652–12653 (2007)

    Article  Google Scholar 

  37. C. Zhang, J.Y. Zheng, Y.S. Zhao, J. Yao, Organic core-shell nanostructures: microemulsion synthesis and upconverted emission. Chem. Commun. 46(27), 4959–4961 (2010)

    Article  Google Scholar 

  38. Q. Liao, H. Fu, C. Wang, J. Yao, Cooperative assembly of binary molecular components into tubular structures for multiple photonic applications. Angew. Chem. Int. Ed. 50(21), 4942–4946 (2011)

    Article  Google Scholar 

  39. C. Zhang, J.Y. Zheng, Y.S. Zhao, J. Yao, Self-modulated white light outcoupling in doped organic nanowire waveguides via the fluctuations of singlet and triplet excitons during propagation. Adv. Mater. 23(11), 1380–1384 (2011)

    Article  Google Scholar 

  40. S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 45(17), 2672–2692 (2006)

    Article  Google Scholar 

  41. X. Li, T. Wang, J. Zhang, D. Zhu, X. Zhang, Y. Ning, H. Zhang, B. Yang, Controlled fabrication of fluorescent barcode nanorods. ACS Nano 4(8), 4350–4360 (2010)

    Article  Google Scholar 

  42. H. Wang, M. Sun, K. Ding, M.T. Hill, C.-Z. Ning, A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays. Nano Lett. 11(4), 1646–1650 (2011)

    Article  Google Scholar 

  43. C. Zhang, Y. Yan, Y.-Y. Jing, Q. Shi, Y.S. Zhao, J. Yao, One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission. Adv. Mater. 24(13), 1703–1708 (2012)

    Article  Google Scholar 

  44. R.S. Tucker, The role of optics in computing. Nature Photon 4(7), 405–405 (2010)

    Article  Google Scholar 

  45. L. Bu, E. Pentzer, F.A. Bokel, T. Emrick, R.C. Hayward, Growth of polythiophene/perylene tetracarboxydiimide donor/acceptor shish-kebab nanostructures by coupled crystal modification. ACS Nano 6(12), 10924–10929 (2012)

    Google Scholar 

  46. Y.S. Zhao, J. Wu, J. Huang, Vertical organic nanowire arrays: controlled synthesis and chemical sensors. J. Am. Chem. Soc. 131(9), 3158–3159 (2009)

    Article  Google Scholar 

  47. Y.S. Zhao, P. Zhan, J. Kim, C. Sun, J. Huang, Patterned growth of vertically aligned organic nanowire waveguide arrays. ACS Nano 4(3), 1630–1636 (2010)

    Article  Google Scholar 

  48. J.Y. Zheng, Y. Yan, X. Wang, Y.S. Zhao, J. Huang, J. Yao, Wire-on-wire growth of fluorescent organic heterojunctions. J. Am. Chem. Soc. 134(6), 2880–2883 (2012)

    Article  Google Scholar 

  49. M. Haurylau, G. Chen, H. Chen, J. Zhang, N.A. Nelson, D.H. Albonesi, E.G. Friedman, P.M. Fauchet, On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Sel Top Quant 12(6), 1699–1705 (2006)

    Article  Google Scholar 

  50. Y. Zhang, Y. Zhang, B. Li, Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15(15), 9287–9292 (2007)

    Article  Google Scholar 

  51. J. Chieh, C. Hong, S. Yang, H. Horng, H. Yang, Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids. J. Nanopart. Res. 12(1), 293–300 (2010)

    Article  Google Scholar 

  52. V.R. Almeida, C.A. Barrios, R.R. Panepucci, M. Lipson, All-optical control of light on a silicon chip. Nature 431(7012), 1081–1084 (2004)

    Article  Google Scholar 

  53. E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  Google Scholar 

  54. R. Yan, P. Pausauskie, J. Huang, P. Yang, Direct photonic-plasmonic coupling and routing in single nanowires. Proc Nat Acad Sci USA 106(50), 21045–21050 (2009)

    Article  Google Scholar 

  55. X. Guo, M. Qiu, J. Bao, B.J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, L. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 9(12), 4515–4519 (2009)

    Article  Google Scholar 

  56. A.L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech 3(11), 660–665 (2008)

    Article  Google Scholar 

  57. Y. Yan, Y.S. Zhao, Exciton polaritons in 1D organic nanocrystals. Adv. Funct. Mater. 22(7), 1330–1332 (2012)

    Article  Google Scholar 

  58. Y. Yan, C. Zhang, J.Y. Zheng, J. Yao, Y.S. Zhao, Optical modulation based on direct photon-plasmon coupling in organic/metal nanowire heterojunctions. Adv. Mater. 24(42), 5681–5686 (2012)

    Article  Google Scholar 

  59. H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater 9(11), 938–943 (2010)

    Article  Google Scholar 

  60. Q. Bao, B.M. Goh, B. Yan, T. Yu, Z. Shen, K.P. Loh, Polarized emission and optical waveguide in crystalline perylene diimide microwires. Adv. Mater. 22(33), 3661–3666 (2010)

    Article  Google Scholar 

  61. M. Sindoro, Y. Feng, S. Xing, H. Li, J. Xu, H. Hu, C. Liu, Y. Wang, H. Zhang, Z. Shen, H. Chen, Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au. Angew. Chem. Int. Ed. 50(42), 9898–9902 (2011)

    Article  Google Scholar 

  62. Y.J. Li, Y. Yan, C. Zhang, Y.S. Zhao, J. Yao, Embedded branch-like organic/metal nanowire heterostructures: liquid-phase synthesis, efficient photon-plasmon coupling, and optical signal manipulation. Adv. Mater. 25(20), 2784–2788 (2013)

    Article  Google Scholar 

  63. C. Yang, L. Wei, S. Jialin, H. Yaping, Z. Jianhong, L. Sheng, S. Hongsan, G. Jihua, A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9), 2378 (2006)

    Article  Google Scholar 

  64. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)

    Article  Google Scholar 

  65. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)

    Article  Google Scholar 

  66. Y. Guo, Q. Tang, H. Liu, Y. Zhang, Y. Li, W. Hu, S. Wang, D. Zhu, Light-controlled organic/inorganic P–N junction nanowires. J. Am. Chem. Soc. 130(29), 9198–9199 (2008)

    Article  Google Scholar 

  67. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)

    Article  Google Scholar 

  68. X. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie, High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 9(11), 2005–2011 (2013)

    Article  Google Scholar 

  69. Y.S. Zhao, H.B. Fu, A.D. Peng, Y. Ma, D.B. Xiao, J.N. Yao, Low-dimensional nanomaterials based on small organic molecules: Preparation and optoelectronic properties. Adv. Mater. 20(15), 2859–2876 (2008)

    Article  Google Scholar 

  70. Y. Che, H. Huang, M. Xu, C. Zhang, B.R. Bunes, X. Yang, L. Zang, Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials. J. Am. Chem. Soc. 133(4), 1087–1091 (2010)

    Article  Google Scholar 

  71. Q.H. Cui, L. Jiang, C. Zhang, Y.S. Zhao, W. Hu, J. Yao, Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties. Adv. Mater. 24(17), 2332–2336 (2012)

    Article  Google Scholar 

  72. F. Gu, L. Zhang, X. Yin, L. Tong, Polymer single-nanowire optical sensors. Nano Lett. 8(9), 2757–2761 (2008)

    Article  Google Scholar 

  73. A. Berrier, R. Cools, C. Arnold, P. Offermans, M. Crego-Calama, S.H. Brongersma, J. Gómez-Rivas, Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons. ACS Nano 5(8), 6226–6232 (2011)

    Article  Google Scholar 

  74. D.J. Sirbuly, S.E. Létant, T.V. Ratto, Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites. Adv. Mater. 20(24), 4724–4727 (2008)

    Article  Google Scholar 

  75. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nature Photon 1(11), 641–648 (2007)

    Article  Google Scholar 

  76. J.Y. Zheng, Y. Yan, X. Wang, W. Shi, H. Ma, Y.S. Zhao, J. Yao, Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides. Adv. Mater. 24(35), OP194–OP199 (2012)

    Google Scholar 

  77. M. Orlovic, R.L. Schowen, R.S. Givens, F. Alvarez, B. Matuszewski, N. Parekh, A simplified model for the dynamics of chemiluminescence in the oxalate-hydrogen peroxide system: toward a reaction mechanism. J. Org. Chem. 54(15), 3606–3610 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21125315, 21373241), the Strategic Priority Research Program of the Chinese Academy of Sciences, (Grant No. XDB01020300), the Ministry of Science and Technology of China (2012YQ120060 and National Basic Research 973 Program), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sheng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yan, Y., Zhao, Y.S. (2015). Design, Fabrication, and Optoelectronic Performance of Organic Building Blocks for Integrated Nanophotonic Devices. In: Zhao, Y. (eds) Organic Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45082-6_8

Download citation

Publish with us

Policies and ethics