Skip to main content

General Principles of PET/CT and Autonomic Innervation of the Heart Including Kinetics and Software

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

Non-invasive imaging of myocardial innervation using positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) is a valuable methodology in cardiac imaging. Although it never entered the clinical arena in an extent as single-photon emission computed tomography (SPECT) imaging for this purpose did, its technical advantages, the excellent properties of the imaging agents, and the availability of tools for quantification combine into an occasionally underrated approach.

This chapter covers a rather wide range of topics and tries not to repeat information provided in other chapters of this book. Consequentially, the focus is to emphasize where all three elements – imaging technique, tracers, and analysis – have to interact to form a viable workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fact that the visual impression is so important comes quite obviously from the dominance of oncological imaging. The potential side effects of introducing changes in image quantification are not too widely investigated although effects on dynamic imaging and thus kinetic analysis exist.

  2. 2.

    This trend has a name: “de-featuring” of a product.

  3. 3.

    The development and production of new radiopharmaceuticals suffers from similar problems.

Abbreviations

BGO:

Bismuth germanate

COMT:

Catechol-O-methyltransferase

CT:

Computed tomography

ECG:

Electrocardiogram

EPI:

Epinephrine

GSO:

Gadolinium oxyorthosilicate

H/M:

Heart–mediastinum ratio

HTX:

Heart transplant surgery

ID:

Injected dose

LOR:

Line of response

LSO:

Lutetium oxyorthosilicate

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

MAO(−A):

Monoamine oxidase (−A)

MR(I):

Magnetic resonance (imaging)

NET:

Norepinephrine transporter

PET:

Positron emission tomography

PHEN:

Phenylephrine

RCSD:

Regional cardiac sympathetic denervation

ROI:

Region of interest

SCA:

Sudden cardiac arrest

SPECT:

Single-photon emission computed tomography

SUV:

Standardized uptake value

VOI:

Volume of interest

VT:

Ventricular tachycardia

References

  • Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M (1993) Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 22:368–375

    Article  CAS  PubMed  Google Scholar 

  • Bassingthwaighte JB, Butterworth E, Jardine B, Raymond GM (2012) Compartmental modeling in the analysis of biological systems. Methods Mol Biol 929:391–438

    Article  CAS  PubMed  Google Scholar 

  • Bengel FM, Ueberfuhr P, Nekolla S, Ziegler SI, Reichart B, Schwaiger M (1999) Oxidative metabolism of the transplanted human heart assessed by positron emission tomography using C-11 acetate. Am J Cardiol 83:1503–1505

    Article  CAS  PubMed  Google Scholar 

  • Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla SG, Odaka K, Reichart B, Schwaiger M (2000) Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 27:1650–1657

    Article  CAS  PubMed  Google Scholar 

  • Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M (2001) Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 345:731–738

    Article  CAS  PubMed  Google Scholar 

  • Boucher L, Rodrigue S, Lecomte R, Benard F (2004) Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 45:214–219

    PubMed  Google Scholar 

  • Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdorfer F, Lorenz WJ (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38:1614–1623

    CAS  PubMed  Google Scholar 

  • Brogsitter C, Gruning T, Weise R, Wielepp P, Lindner O, Korfer R, Burchert W (2005) 18F-FDG PET for detecting myocardial viability: validation of 3D data acquisition. J Nucl Med 46:19–24

    PubMed  Google Scholar 

  • Bundschuh RA, Martinez-Moeller A, Essler M, Martinez MJ, Nekolla SG, Ziegler SI, Schwaiger M (2007) Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: a feasibility study. J Nucl Med 48:758–763

    Article  PubMed  Google Scholar 

  • Bundschuh RA, Martinez-Moller A, Essler M, Nekolla SG, Ziegler SI, Schwaiger M (2008) Local motion correction for lung tumours in PET/CT–first results. Eur J Nucl Med Mol Imaging 35:1981–1988

    Article  PubMed  Google Scholar 

  • Buther F, Dawood M, Stegger L, Wubbeling F, Schafers M, Schober O, Schafers KP (2009) List mode-driven cardiac and respiratory gating in PET. J Nucl Med 50:674–681

    Article  PubMed  Google Scholar 

  • Buther F, Ernst I, Dawood M, Kraxner P, Schafers M, Schober O, Schafers KP (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37:2315–2327

    Article  PubMed  Google Scholar 

  • Butterworth E, Jardine BE, Raymond GM, Neal ML, Bassingthwaighte JB (2013) JSim, an open-source modeling system for data analysis. F1000Res 2:288

    PubMed Central  PubMed  Google Scholar 

  • Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, Iskandrian AE (2005) Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 12:687–695

    Article  PubMed  Google Scholar 

  • de Jong RM, Willemsen AT, Slart RH, Blanksma PK, van Waarde A, Cornel JH, Vaalburg W, van Veldhuisen DJ, Elsinga PH (2005) Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 32:443–447

    Article  PubMed  Google Scholar 

  • DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M (1993) Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 34:1287–1293

    CAS  PubMed  Google Scholar 

  • Delforge J, Syrota A, Lancon JP, Nakajima K, Loc’h C, Janier M, Vallois JM, Cayla J, Crouzel C (1991) Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 32:739–748

    CAS  PubMed  Google Scholar 

  • Delforge J, Mesangeau D, Dolle F, Merlet P, Loc’h C, Bottlaender M, Trebossen R, Syrota A (2002) In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 43:215–226

    CAS  PubMed  Google Scholar 

  • Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI, Schwaiger M (2011) Preliminary study of the detectability of coronary plaque with PET. Phys Med Biol 56:2145–2160

    Article  CAS  PubMed  Google Scholar 

  • DiFilippo FP, Brunken RC (2005) Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med 46:436–443

    PubMed  Google Scholar 

  • Doze P, Elsinga PH, van Waarde A, Pieterman RM, Pruim J, Vaalburg W, Willemsen AT (2002) Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 29:295–304

    Article  CAS  PubMed  Google Scholar 

  • Fallavollita JA, Banas MD, Suzuki G, deKemp RA, Sajjad M, Canty JM Jr (2010) 11C-meta-hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol 17:85–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, Hutson AD, Dekemp RA, Haka MS, Sajjad M, Cimato TR, Curtis AB, Cain ME, Canty JM Jr (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63:141–149

    Article  PubMed Central  PubMed  Google Scholar 

  • Gelfand MJ, Thomas SR (1987) Effective use of computers in nuclear medicine. McGraw-Hill, New York

    Google Scholar 

  • Gigengack F, Ruthotto L, Burger M, Wolters CH, Jiang X, Schafers KP (2012) Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans Med Imaging 31:698–712

    Article  PubMed  Google Scholar 

  • Haas F, Augustin N, Holper K, Wottke M, Haehnel C, Nekolla S, Meisner H, Lange R, Schwaiger M (2000) Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. J Am Coll Cardiol 36:1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, Ratib O, Czernin J (2004a) Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med 45:797–801

    PubMed  Google Scholar 

  • Halpern BS, Dahlbom M, Waldherr C, Yap CS, Schiepers C, Silverman DH, Ratib O, Czernin J (2004b) Cardiac pacemakers and central venous lines can induce focal artifacts on CT-corrected PET images. J Nucl Med 45:290–293

    PubMed  Google Scholar 

  • Harms HJ, de Haan S, Knaapen P, Allaart CP, Lammertsma AA, Lubberink M (2011) Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med 52:745–749

    Article  PubMed  Google Scholar 

  • Higuchi T, Yousefi BH, Kaiser F, Gartner F, Rischpler C, Reder S, Yu M, Robinson S, Schwaiger M, Nekolla SG (2013) Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med 54:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Huang SC (2000) Anatomy of SUV. Standardized uptake value. Nucl Med Biol 27:643–646

    Article  CAS  PubMed  Google Scholar 

  • Humm JL, Rosenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30:1574–1597

    Article  PubMed  Google Scholar 

  • Ibrahim T, Nekolla SG, Schreiber K, Odaka K, Volz S, Mehilli J, Guthlin M, Delius W, Schwaiger M (2002) Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 39:864–870

    Article  PubMed  Google Scholar 

  • Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J, Investigators A-H (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  • Katoh C, Yoshinaga K, Klein R, Kasai K, Tomiyama Y, Manabe O, Naya M, Sakakibara M, Tsutsui H, deKemp RA, Tamaki N (2012) Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. J Nucl Cardiol 19:763–774

    Article  PubMed  Google Scholar 

  • Knesaurek K, Machac J, Krynyckyi BR, Almeida OD (2003) Comparison of 2-dimensional and 3-dimensional 82Rb myocardial perfusion PET imaging. J Nucl Med 44:1350–1356

    PubMed  Google Scholar 

  • Knesaurek K, Machac J, Ho Kim J (2007) Comparison of 2D, 3D high dose and 3D low dose gated myocardial 82Rb PET imaging. BMC Nucl Med 7:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Koivumaki T, Vauhkonen M, Kuikka JT, Hakulinen MA (2012) Bioimpedance-based measurement method for simultaneous acquisition of respiratory and cardiac gating signals. Physiol Meas 33:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Lartizien C, Kinahan PE, Comtat C (2004) A lesion detection observer study comparing 2-dimensional versus fully 3-dimensional whole-body PET imaging protocols. J Nucl Med 45:714–723

    PubMed  Google Scholar 

  • Lehner S, Uebleis C, Schussler F, Haug A, Kaab S, Bartenstein P, Van Kriekinge SD, Germano G, Estner H, Hacker M (2013) The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multiparametric ECG-gated [18F]FDG PET. Eur J Nucl Med Mol Imaging 40:1876–1883

    Article  CAS  PubMed  Google Scholar 

  • Lekx KS, deKemp RA, Beanlands RS, Wisenberg G, Wells G, Stodilka RZ, Lortie M, Klein R, Zabel P, Kovacs MS, Sykes J, Prato FS (2010) 3D versus 2D dynamic 82Rb myocardial blood flow imaging in a canine model of stunned and infarcted myocardium. Nucl Med Commun 31:75–81

    Article  CAS  PubMed  Google Scholar 

  • Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53:R287–R317

    Article  PubMed Central  PubMed  Google Scholar 

  • Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670

    Article  CAS  PubMed  Google Scholar 

  • Magota K, Hattori N, Manabe O, Naya M, Oyama-Manabe N, Shiga T, Kuge Y, Yamada S, Sakakibara M, Yoshinaga K, Tamaki N (2013) Electrocardiographically gated C-hydroxyephedrine PET for the simultaneous assessment of cardiac sympathetic and contractile functions. Ann Nucl Med 28:187–195

    Article  PubMed  Google Scholar 

  • Makris NE, Huisman MC, Kinahan PE, Lammertsma AA, Boellaard R (2013) Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures. Eur J Nucl Med Mol Imaging 40:1507–1515

    Article  PubMed  Google Scholar 

  • Marinelli M, Martinez-Moller A, Jensen B, Positano V, Weismuller S, Navab N, Landini L, Schwaiger M, Nekolla SG (2010) Registration of myocardial PET and SPECT for viability assessment using mutual information. Med Phys 37:2414–2424

    Article  PubMed  Google Scholar 

  • Martinez MJ, Bercier Y, Schwaiger M, Ziegler SI (2006) PET/CT biograph sensation 16. Performance improvement using faster electronics. Nuklearmedizin 45:126–133

    PubMed  Google Scholar 

  • Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG (2007a) Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 48:188–193

    PubMed  Google Scholar 

  • Martinez-Moller A, Zikic D, Botnar RM, Bundschuh RA, Howe W, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2007b) Dual cardiac-respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 34:1447–1454

    Article  PubMed  Google Scholar 

  • Merlet P, Delforge J, Syrota A, Angevin E, Maziere B, Crouzel C, Valette H, Loisance D, Castaigne A, Rande JL (1993) Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Munch G, Nguyen NT, Nekolla S, Ziegler S, Muzik O, Chakraborty P, Wieland DM, Schwaiger M (2000) Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation 101:516–523

    Article  CAS  PubMed  Google Scholar 

  • Nakazato R, Dey D, Alexanderson E, Meave A, Jimenez M, Romero E, Jacome R, Pena M, Berman DS, Slomka PJ (2012) Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT. J Nucl Cardiol 19:482–491

    Article  PubMed Central  PubMed  Google Scholar 

  • Naya M, Tsukamoto T, Morita K, Katoh C, Nishijima K, Komatsu H, Yamada S, Kuge Y, Tamaki N, Tsutsui H (2009) Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med 50:220–225

    Article  CAS  PubMed  Google Scholar 

  • Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 25:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Nesterov SV, Han C, Maki M, Kajander S, Naum AG, Helenius H, Lisinen I, Ukkonen H, Pietila M, Joutsiniemi E, Knuuti J (2009) Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging 36:1594–1602

    Article  PubMed  Google Scholar 

  • Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M (1997) Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 38:780–785

    CAS  PubMed  Google Scholar 

  • Odaka K, von Scheidt W, Ziegler SI, Ueberfuhr P, Nekolla SG, Reichart B, Bengel FM, Schwaiger M (2001) Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 42:1011–1016

    CAS  PubMed  Google Scholar 

  • Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55:414–422

    Article  CAS  PubMed  Google Scholar 

  • Parodi O, Schelbert HR, Schwaiger M, Hansen H, Selin C, Hoffman EJ (1984) Cardiac emission computed-tomography – underestimation of regional tracer concentrations due to wall motion abnormalities. J Comput Assist Tomogr 8:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Corbett JR, del Rosario RB, Gildersleeve DL, Chiao PC, Schwaiger M, Wieland DM (1996) Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 37:1923–1931

    CAS  PubMed  Google Scholar 

  • Raffel DM, Corbett JR, del Rosario RB, Mukhopadhyay SK, Gildersleeve DL, Rose P, Wieland DM (1999) Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med 40:232–238

    CAS  PubMed  Google Scholar 

  • Raffel DM, Chen W, Jung YW, Jang KS, Gu G, Cozzi NV (2013a) Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol 40:331–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel DM, Koeppe RA, Jung YW, Gu G, Jang KS, Sherman PS, Quesada CA (2013b) Quantification of cardiac sympathetic nerve density with N-11C-guanyl-meta-octopamine and tracer kinetic analysis. J Nucl Med 54:1645–1652

    Article  CAS  PubMed  Google Scholar 

  • Raylman RR, Caraher JM, Hutchins GD (1993) Sampling requirements for dynamic cardiac PET studies using image-derived input functions. J Nucl Med 34:440–447

    CAS  PubMed  Google Scholar 

  • Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, Wieland DM (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    CAS  PubMed  Google Scholar 

  • Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J (2012) PET: is myocardial flow quantification a clinical reality? J Nucl Cardiol 19:1044–1059

    Article  PubMed  Google Scholar 

  • Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, Nekolla SG, Dong J, Lardo AC, Halperin H, Dannals RF, Marban E, Bengel FM (2008) Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 51:2266–2275

    Article  PubMed  Google Scholar 

  • Schepis T, Gaemperli O, Treyer V, Valenta I, Burger C, Koepfli P, Namdar M, Adachi I, Alkadhi H, Kaufmann PA (2007) Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J Nucl Med 48:1783–1789

    Article  CAS  PubMed  Google Scholar 

  • Schmidt KC, Turkheimer FE (2002) Kinetic modeling in positron emission tomography. Q J Nucl Med 46:70–85

    CAS  PubMed  Google Scholar 

  • Schwaiger M, Ziegler S, Nekolla SG (2005) PET/CT: challenge for nuclear cardiology. J Nucl Med 46:1664–1678

    PubMed  Google Scholar 

  • Slomka PJ, Baum RP (2009) Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 36(Suppl 1):S44–S55

    Article  PubMed  Google Scholar 

  • Souvatzoglou M, Bengel F, Busch R, Kruschke C, Fernolendt H, Lee D, Schwaiger M, Nekolla SG (2007) Attenuation correction in cardiac PET/CT with three different CT protocols: a comparison with conventional PET. Eur J Nucl Med Mol Imaging 34:1991–2000

    Article  PubMed  Google Scholar 

  • Tahari AK, Lee A, Rajaram M, Fukushima K, Lodge MA, Lee BC, Ficaro EP, Nekolla S, Klein R, deKemp RA, Wahl RL, Bengel FM, Bravo PE (2014) Absolute myocardial flow quantification with (82)Rb PET/CT: comparison of different software packages and methods. Eur J Nucl Med Mol Imaging 41:126–135

    Article  PubMed  Google Scholar 

  • Thackeray JT, Bengel FM (2013) Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol 20:150–165

    Article  PubMed  Google Scholar 

  • Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN (2013) Insulin restores myocardial presynaptic sympathetic neuronal integrity in insulin-resistant diabetic rats. J Nucl Cardiol 20:845–856

    Article  PubMed  Google Scholar 

  • Tipre DN, Goldstein DS (2005) Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med 46:1775–1781

    CAS  PubMed  Google Scholar 

  • Townsend DW, Cherry SR (2001) Combining anatomy and function: the path to true image fusion. Eur Radiol 11:1968–1974

    Article  CAS  PubMed  Google Scholar 

  • van Elmpt W, Hamill J, Jones J, De Ruysscher D, Lambin P, Ollers M (2011) Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 38:843–855

    Article  PubMed Central  PubMed  Google Scholar 

  • Visser EP, Boerman OC, Oyen WJ (2010) SUV: from silly useless value to smart uptake value. J Nucl Med 51:173–175

    Article  PubMed  Google Scholar 

  • Wen L, Eberl S, Fulham M, Feng DD (2012) Recent software developments and applications in functional imaging. Curr Pharm Biotechnol 13:2166–2181

    Article  PubMed  Google Scholar 

  • Willemsen AT, van den Hoff J (2002) Fundamentals of quantitative PET data analysis. Curr Pharm Des 8:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, Radeke HS, Azure M, Purohit A, Casebier DS, Robinson SP (2007) Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol 14:782–788

    Article  PubMed  Google Scholar 

  • Yoshida K, Endo M, Fukuda H, Kagaya A, Himi T, Masuda Y, Inagaki Y, Iinuma T, Yamasaki T, Tateno Y (1995) Measurement of arterial tracer concentrations from cardiac PET images. J Comput Assist Tomogr 19:182–187

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, Yalamanchili P, Onthank D, Mistry M, Lazewatsky J, Broekema M, Radeke H, Purohit A, Cdebaca M, Azure M, Cesati R, Casebier D, Robinson SP (2011) Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 4:435–443

    Article  PubMed  Google Scholar 

  • Yu M, Bozek J, Lamoy M, Kagan M, Benites P, Onthank D, Robinson SP (2012) LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging 39:1910–1919

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan G. Nekolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nekolla, S.G., Rischpler, C. (2015). General Principles of PET/CT and Autonomic Innervation of the Heart Including Kinetics and Software. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics