Skip to main content

Imaging the Parasympathetic Cardiac Innervation with PET

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

Parasympathetic tone plays a critical role as modulator of the cardiac sympathetic nervous system the healthy and diseased heart and has a major impact upon the occurrence of arrhythmias and sudden death. Decreased parasympathetic tone is an important prognostic factor in heart failure. Abnormalities of both systems, sympathetic and parasympathetic, have been shown to be either global or regional. This represents a major rationale for the use of imaging techniques to measure autonomic nervous system function, particularly as the other clinical tools such as heart rate variability are of limited value.

Positron emission tomography (PET) imaging with short half-life positron-labeled specific ligands allows this evaluation. However, PET measures the labeled ligand concentration, but the quantification of the receptor density and affinity requires mathematical modeling to simulate the kinetics of the labeled molecule in the tissue, with the use of compartmental analysis and complex protocols. These protocols include injection not only of the tracer but also of pharmacological doses of the cold ligand for co-injection or displacement experiments.

PET imaging with [11C]-methyl-quinuclidin-3-yl benzilate has been validated as an accurate tool to measure muscarinic receptor density and affinity constants in patients with heart failure, including postinfarction patients. A novel (α4β2) nicotinic acetylcholine receptor PET ligand, 2-[18F]-F-A-85380, was also used in patients for evaluation of left ventricular and arterial wall nicotinic receptors.

Although limited today to research centers, PET imaging of the cardiac parasympathetic innervation provides new insight into pathophysiological processes and can be used for the evaluation of new drugs. In the future, it could emerge as a reference for validation of more simple tools and of easier imaging protocols and for early diagnosis, monitoring of treatment, and determination of individual outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

DCM:

Dilated cardiomyopathy

DMSO:

Dimethyl sulfoxide

ECG:

Electrocardiogram

FAP:

Familial amyloid polyneuropathy

FDG:

Fluorodeoxyglucose

HPLC:

High-performance liquid chromatography

mAChR:

Muscarinic acetylcholine receptor

MR:

See mAChR

MSA:

Multiple system atrophy

nAChR:

Nicotinic acetylcholine receptor

NMS:

N-Methylscopolamine

PET:

Positron emission tomography

QNB:

3-Quinuclidinyl benzilate (or quinuclidin-3-yl benzilate)

ROI:

Region of interest

SD:

Standard deviation

SE:

Standard error

SPECT:

Single-photon emission computed tomography

SPET:

See SPECT

SUV:

Standardized uptake value

TBP:

Tributyl phosphate

TFA:

Trifluoroacetic acid

TTR:

Transthyretin (gene)

References

  • Abramochkin DV, Tapilina SV, Sukhova GS (2013) Effect of selective stimulation of muscarinic M3 cholinoceptors on electrical and contractile activity of rat ventricular myocardium. Bull Exp Biol Med 154:295–298

    Article  CAS  PubMed  Google Scholar 

  • Adams D, Samuel D, Goulon-Goeau C et al (2000) The course and prognostic factors of familial polyneuropathy after liver transplantation. Brain 123:1495–1504

    Article  PubMed  Google Scholar 

  • Binkley PF, Nunziata E, Nelson SD et al (1991) Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol 18:464–472

    Article  CAS  PubMed  Google Scholar 

  • Böhm M, Gierschik P, Jajobs KH et al (1990) Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    Article  PubMed  Google Scholar 

  • Bottlaender M, Valette H, Roumenov D et al (2003) Biodistribution and radiation dosimetry of [18F]fluoro-A-85380 in healthy volunteers. J Nucl Med 44:596–601

    CAS  PubMed  Google Scholar 

  • Brack KE, Winter J, Ng GA (2013) Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation–tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev 18:389–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Bristow MR (1990) The surgically denervated, transplanted human heart. Circulation 82:658–660

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD et al (1990) β-Adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82(Suppl I):I12–I25

    CAS  PubMed  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K et al (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  CAS  PubMed  Google Scholar 

  • Brody AL, Mandelkern MA, London ED et al (2006) Cigarette smoking saturates brain α4β2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brüggmann D, Lips KS, Pfeil U et al (2002) Multiple nicotinic acetylcholine receptor alpha-subunits are expressed in the arterial system of the rat. Histochem Cell Biol 118:441–447

    PubMed  Google Scholar 

  • Bucerius J, Joe AY, Schmaljohann J et al (2006a) Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose- A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 95:105–109

    Article  CAS  PubMed  Google Scholar 

  • Bucerius J, Joe AY, Schmaljohann J et al (2006b) Erratum: Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose- A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 95:354

    Article  Google Scholar 

  • Bucerius J, Manka C, Schmaljohann J et al (2012) Feasibility of [18F]-2-Fluoro-A85380-PET imaging of human vascular nicotinic acetylcholine receptors in vivo. JACC Cardiovasc Imaging 5:528–536

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooke JP (2012) Imaging vascular nicotine receptors: a new window onto vascular disease. JACC Cardiovasc Imaging 5:537–539

    Article  PubMed  Google Scholar 

  • DeGrado TR, Mulholland KG, Wieland DM et al (1994) Evaluation of F-18 fluoroethoxy-benzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 21:189–195

    Article  CAS  PubMed  Google Scholar 

  • Delahaye N, Dinanian S, Slama M et al (1999) Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 26:416–424

    Article  CAS  PubMed  Google Scholar 

  • Delahaye N, Le Guludec D, Dinanian S et al (2001) Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 104:2911–6291

    Article  CAS  PubMed  Google Scholar 

  • Delahaye N, Rouzet F, Sarda L et al (2006) Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine 85:229–238

    Article  PubMed  Google Scholar 

  • Delforge J, Syrota A, Mazoyer B (1989) Experimental design optimization: theory and application to estimation of receptor model parameters using dynamic positron emission tomography. Phys Med Biol 34:419–435

    Article  CAS  PubMed  Google Scholar 

  • Delforge J, Janier M, Syrota A et al (1990a) Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation 82:1494–1504

    Article  CAS  PubMed  Google Scholar 

  • Delforge J, Syrota A, Mazoyer B (1990b) Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng 37:653–661

    Article  CAS  PubMed  Google Scholar 

  • Delforge J, Le Guludec D, Syrota A et al (1993) Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med 34:981–991

    CAS  PubMed  Google Scholar 

  • Delforge J, Pappata S, Millet P et al (1995) Quantification of benzodiazepine receptors in human brain using PET, [11C]flumazenil, and a single-experiment protocol. J Cereb Blood Flow Metab 15:284–300

    Article  CAS  PubMed  Google Scholar 

  • Delforge J, Syrota A, Bendriem B (1996) The concept of reaction volume in the in vivo ligand-receptor model. J Nucl Med 37:118–125

    CAS  PubMed  Google Scholar 

  • Delforge J, Bottlaender M, Pappata S et al (2001) Absolute quantification by positron emission tomography of the endogenous lligand. J Cereb Blood Flow Metab 21:613–630

    Google Scholar 

  • Delforge J, Mesangeau D, Dolle F, Merlet P, Loc’h C, Bottlaender M, Trebossen R, Syrota A (2002) In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 43:215–226

    CAS  PubMed  Google Scholar 

  • Dollé F (2005) Fluorine-18-labelled fluoropyridines: Advances in radiopharmaceutical design. Curr Pharm Design 11:3221–3235

    Article  Google Scholar 

  • Dollé F, Valette H, Bottlaender M et al (1998) Synthesis of 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine, a highly potent radioligand for in vivo imaging central nicotinic acetylcholine receptors. J Label Compds Radiopharm 41:451–463

    Article  Google Scholar 

  • Dollé F, Dolci L, Valette H et al (1999) Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors. J Med Chem 42:2251–2259

    Article  Google Scholar 

  • Dollé F, Hinnen F, Vaufrey F et al (2001) Highly Efficient synthesis of [11C]Me-QNB, a selective radioligand for the quantification of the cardiac muscarinic receptors using PET. J Label Compds Radiopharm 44:337–345

    Article  Google Scholar 

  • Dollé F, Roeda D, Kuhnast B et al (2008) Fluorine-18 chemistry for molecular imaging with positron emission tomography. In: Tressaud A, Haufe G (eds) Fluorine and health: molecular imaging, biomedical materials and pharmaceuticals. Elsevier, Amsterdam/Boston/Heidelberg/London/New York/Oxford/Paris/San Diego/San Francisco/Singapore/Sydney/Tokyo

    Google Scholar 

  • Donato M, Buchholz B, Rodríguez M et al (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 98:425–434

    Article  PubMed  Google Scholar 

  • Egleton RD, Brown KC, Dasgupta P (2009) Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther 121:205–223

    Article  CAS  PubMed  Google Scholar 

  • Ellis JR, Villemagne VL, Nathan PJ et al (2008) Relationship between nicotinic receptors and cognitive function in early Alzheimer’s disease: A 2-[18F]fluoro-A-85380 PET study. Neurobiol Learn Mem 90:404–412

    Article  CAS  PubMed  Google Scholar 

  • Ellis JR, Nathan PJ, Villemagne VL et al (2009) The relationship between nicotinic receptors and cognitive functioning in healthy aging: an in vivo positron emission tomography (PET) study with 2-[18F]fluoro-A-85380. Synapse 63:752–763

    Article  CAS  PubMed  Google Scholar 

  • Endres CJ, Kolachana BS, Saunders RC, Su T, Weinberger D, Breier A, Eckelman WC, Carson RE (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  CAS  PubMed  Google Scholar 

  • Farde L, Hall H, Pauli S, Halldin C (1995) Variability in D2-dopamine receptor density and affinity: a PET study with [11C]Raclopride in Man. Synapse 20:200–208

    Article  CAS  PubMed  Google Scholar 

  • Folino AF, Tokajuk B, Porta A et al (2005) Autonomic modulation and clinical outcome in patients with chronic heart failure. Int J Cardiol 100:247–251

    Article  PubMed  Google Scholar 

  • Frenneaux MP (2004) Autonomic changes in patients with heart failure and in post-myocardial infarction patients. Heart 90:1248–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallezot JD, Bottlaender M, Grégoire MC et al (2005) In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-[18F]fluoro-A-85380 and PET. J Nucl Med 46:240–247

    CAS  PubMed  Google Scholar 

  • Gómez-Vallejo V, González-Esparza M, Llop J (2012) Facile and improved synthesis of [11C]Me-QNB. J Label Compds Radiopharm 55:470–473

    Article  Google Scholar 

  • Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hang P, Zhao J, Qi J et al (2013) Novel insights into the pervasive role of M(3) muscarinic receptor in cardiac diseases. Curr Drug Targets 14:372–377

    CAS  PubMed  Google Scholar 

  • Hermosillo AG, Dorado M, Casanova MJ et al (1993) Influence of infarct-related artery patency on the indexes of parasympathetic activity and prevalence of late potentials in survivors of acute myocardial infarction. J Am Coll Cardiol 22:695–706

    Article  CAS  PubMed  Google Scholar 

  • Horti A, Koren AO, Ravert HT et al (1998) Synthesis of a radiotracer for studying nicotinic acetylcholine receptors: 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]A-85380). J Label Compds Radiopharm 41:309–318

    Article  CAS  Google Scholar 

  • Kas A, Bottlaender M, Gallezot JD et al (2009) In vivo decrease of nigrostriatal nicotinic receptors in Parkinson’s disease: A PET study. J Cereb Blood Flow Metab 29:1601–1608

    Article  CAS  PubMed  Google Scholar 

  • Katare RG, Ando M, Kakinuma Y et al (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Okada R, Yano K (2003) Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 18:32–39

    Article  PubMed  Google Scholar 

  • Kleiger RE, Stein PK, Bigger JT Jr (2005) Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol 10:88–101

    Article  PubMed  Google Scholar 

  • La Rovere MT, Bigger JT Jr, Marcus FI et al (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351:478–484

    Article  PubMed  Google Scholar 

  • Le Guludec D, Delforge J, Syrota A et al (1994) In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 90:172–178

    Article  PubMed  Google Scholar 

  • Le Guludec D, Cohen-Solal A, Delforge J et al (1997) Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 96:3416–3422

    Article  PubMed  Google Scholar 

  • Liu N, Ding Y-S, Wang T et al (2002) Synthesis of 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine as a radioligand for imaging nicotinic acetylcholine receptors. Nucl Sci Tech 13:92–97

    CAS  Google Scholar 

  • Mastitskaya S, Marina N, Gourine A et al (2013) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95:487–494

    Article  Google Scholar 

  • Mazière M, Berger G, Godot J-M et al (1983) C-11-Methiodide quinuclidinyl benzilate, a muscarinic antagonist for in vivo studies of myocardial muscarinic receptors. J Radioanal Chem 76:305–309

    Article  Google Scholar 

  • Mazzadi A, Pineau J, Costes N et al (2009) Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging 2:365–372

    Article  PubMed  Google Scholar 

  • Miao Y, Nichols SE, Gasper PM et al (2013) Activation and dynamic network of the M2 muscarinic receptor. Proc Natl Acad Sci U S A 110:10982–10987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nenasheva TA, Neary M, Mashanov GI et al (2013) Abundance, distribution, mobility and oligomeric state of M2 muscarinic acetylcholine receptors in live cardiac muscle. J Mol Cell Cardiol 57:129–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan J, Flapan AD, Capwewell S et al (1992) Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function. Br Heart J 67:482–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohte N, Narita H, Iida A et al (2012) Cardiac β-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging 39:1246–1253

    Article  PubMed  Google Scholar 

  • Olshansky B, Sabbah HN, Hauptman PJ et al (2008) Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118:863–871

    Article  PubMed  Google Scholar 

  • Picard F, Bruel D, Servent D et al (2006) Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 129:2047–2060

    Article  CAS  PubMed  Google Scholar 

  • Roeda D, Kuhnast B, Hammadi A et al (2007) The Service Hospitalier Frédéric Joliot – contributions to PET chemistry over the years. J Label Compds Radiopharm 50:848–866

    Article  CAS  Google Scholar 

  • Santanam N, Thornhill BA, Lau JK et al (2012) Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis 225:264–273

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann J, Minnerop M, Karwath P et al (2004) Imaging of central nAChReceptors with 2-[18F]F-A85380: optimized synthesis and in vitro evaluation in Alzheimer’s disease. Appl Radiat Isot 61:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Schmaljohann J, Gündisch D, Minnerop M et al (2005) A simple and fast method for the preparation of n.c.a. 2-[18F]F-A85380 for human use. Appl Radiat Isot 63:433–435

    Article  CAS  PubMed  Google Scholar 

  • Schmitz W, Boknik P, Linck B et al (1996) Adrenergic and muscarinic receptor regulation and therapeutic implications in heart failure. Mol Cell Biochem 157:251–258

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 85:I77–I91

    CAS  PubMed  Google Scholar 

  • Stengel PW, Gomeza J, Wess J et al (2002) M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. Pharmacol Exp Therap 292:877–885

    Google Scholar 

  • Sullivan JP, Donnelly-Roberts DL, Briggs CA et al (1996) A-85380 [3-(2(S)-azetidinylmethoxy)pyridine]: In vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptors ligand. Neuropharmacology 35:725–734

    Article  CAS  PubMed  Google Scholar 

  • Townend JN, Littler WA (1995) Cardiac vagal activity: a target for intervention in heart disease. Lancet 345:937–938

    Article  CAS  PubMed  Google Scholar 

  • Valette H, Deleuze P, Syrota A et al (1995) Canine myocardial beta-adrenergic, muscarinic receptor densities after denervation: a PET study. J Nucl Med 36:140–146

    CAS  PubMed  Google Scholar 

  • Valette H, Syrota A, Fuseau C (1997) Down-regulation of cardiac muscarinic receptors induced by di-isopropylfluorophosphate. J Nucl Med 38:1430–1433

    CAS  PubMed  Google Scholar 

  • Valette H, Bottlaender M, Dollé F et al (2003) Long-lasting occupancy of central nicotinic acetylcholine receptors after smoking: a PET study in monkeys. J Neurochem 84:105–111

    Article  CAS  PubMed  Google Scholar 

  • van Zwieten PA (1991) Adrenergic and muscarinergic receptors: classification, pathophysiological relevance and drug target. J Hypertens 9(Suppl):S18–S27

    Google Scholar 

  • Vanoli E, Schwartz PJ (1990) Sympathetic–parasympathetic interaction and sudden death. Basic Res Cardiol 85(Suppl 1):305–321

    PubMed  Google Scholar 

  • Vatner DE, Lavallee M, Amano J, Finizola A, Homcy CJ, Vatner SF (1985) Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res 57:55–64

    Article  CAS  PubMed  Google Scholar 

  • Vatner DE, Sato N, Galper JB et al (1996) Physiological and biochemical evidence for coordinate increases in muscarinic receptors and Gi during pacing-induced heart failure. Circulation 94:102–107

    Article  CAS  PubMed  Google Scholar 

  • Walker JL (1986) Intracellular inorganic ions in cardiac tissue. In: Fozzard H, Haber E, Jennings R, Katz AM, Morgan HE (eds) The heart and cardiovascular system, scientific foundations. Raven Press, New York

    Google Scholar 

  • Zhao M, He X, Bi XY et al (2013) Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 108:345

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Le Guludec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Guludec, D., Delforge, J., Dollé, F. (2015). Imaging the Parasympathetic Cardiac Innervation with PET. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics