Skip to main content

Role of the Autonomic Nervous System in Ventricular Arrhythmias During Acute Myocardial Ischemia and Infarction

  • Chapter
  • First Online:
Book cover Autonomic Innervation of the Heart

Abstract

Significant advances have been made in recent years to elucidate the neural mechanisms involved in the genesis of cardiac arrhythmias during acute myocardial ischemia and infarction. The cellular and molecular processes whereby the sympathetic nervous system serves as a trigger for arrhythmia, and those responsible for the protective effect of vagus nerve activity, have been extensively characterized. Mounting evidence supports the importance of neural remodeling following myocardial infarction, which has provided valuable clues regarding factors that impact risk for sudden cardiac death. Promising nerve stimulation strategies including vagus nerve activation and spinal cord stimulation have progressed from animal testing to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ICD:

Implantable cardioverter defibrillator

References

  • Cao JM, Fishbein MC, Han JB et al (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    Article  CAS  PubMed  Google Scholar 

  • Chen PS, Chen LS, Cao JM et al (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416

    Article  CAS  PubMed  Google Scholar 

  • Coleman MA, Bos JM, Johnson JN et al (2012) Videoscopic left cardiac sympathetic denervation for patients with recurrent ventricular fibrillation/malignant ventricular arrhythmia syndromes besides congenital long QT syndrome. Circ Arrhythm Electrophysiol 5:782–788

    Article  PubMed Central  PubMed  Google Scholar 

  • Corbalan R, Verrier RL, Lown B (1976) Differing mechanisms for ventricular vulnerability during coronary artery occlusion and release. Am Heart J 92:223–230

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GM, Crijns HJ, Borggrefe M et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32:847–855

    Article  PubMed  Google Scholar 

  • Ferrero P, Castagno D, Massa R et al (2008) Spinal cord stimulation affects T-wave alternans in patients with ischaemic cardiomyopathy: a pilot study. Europace 10:506–508

    Article  PubMed  Google Scholar 

  • Issa ZF, Zhou X, Ujhelyi MR et al (2005) Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111:3217–3220

    Article  PubMed  Google Scholar 

  • Kowey PR, Verrier RL, Lown B (1983) Effect of alpha-adrenergic receptor stimulation on ventricular electrical properties in the normal canine heart. Am Heart J 105:366–371

    Article  CAS  PubMed  Google Scholar 

  • Lampert R, Joska T, Burg MM et al (2002) Emotional and physical precipitants of ventricular arrhythmia. Circulation 106:1800–1805

    Article  PubMed  Google Scholar 

  • Lee HC, Mohabir R, Smith N et al (1988) Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation 78:1047–1059

    Article  CAS  PubMed  Google Scholar 

  • Levy MN, Blattberg B (1976) Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 38:81–84

    Article  CAS  PubMed  Google Scholar 

  • Lombardi F, Verrier RL, Lown B (1983) Relationship between sympathetic neural activity, coronary dynamics, and vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Am Heart J 105:958–965

    Article  CAS  PubMed  Google Scholar 

  • Lown B, Verrier RL (1976) Neural activity and ventricular fibrillation. N Engl J Med 294:1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217:703–709

    CAS  PubMed  Google Scholar 

  • Minardo JD, Tuli MM, Mock BH et al (1988) Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 78:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Mittleman MA, Maclure M, Sherwood JB et al (1995) Triggering of acute myocardial infarction onset by episodes of anger. Circulation 92:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Muller JE, Ludmer PL, Willich SN (1987) Circadian variation in the frequency of sudden cardiac death. Circulation 75:131–138

    Article  CAS  PubMed  Google Scholar 

  • Nearing BD, Huang AH, Verrier RL (1991) Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wave. Science 252:437–440

    Article  CAS  PubMed  Google Scholar 

  • Nearing BD, Oesterle SN, Verrier RL (1994) Quantification of ischaemia-induced vulnerability by precordial T-wave alternans analysis in dog and human. Cardiovasc Res 28:1440–1449

    Article  CAS  PubMed  Google Scholar 

  • Olsson G, Wikstrand J, Warnold I (1992) Metoprolol-induced reduction in postinfarction mortality: pooled results from five double-blind randomized trials. Eur Heart J 13:28–32

    CAS  PubMed  Google Scholar 

  • Opie LH (2004) Heart physiology: from cell to circulation, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Schwartz PJ, Snebold NG, Brown AM (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37:1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PJ, Motolese M, Pollavini G et al (1992) Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. J Cardiovasc Electrophysiol 3:2–16

    Article  Google Scholar 

  • Schwartz PJ, Priori SG, Cerrone M et al (2004) Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109:1826–1833

    Article  PubMed  Google Scholar 

  • Tsai J, Cao JM, Zhou S et al (2002) T wave alternans as a predictor of spontaneous ventricular tachycardia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 13:51–55

    Article  PubMed  Google Scholar 

  • Vanoli E, De Ferrari GM, Stramba-Badiale M et al (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481

    Article  CAS  PubMed  Google Scholar 

  • Verrier RL, Kwaku KF (2004) Frayed nerves in myocardial infarction: the importance of rewiring. Circ Res 94:5–6

    Article  Google Scholar 

  • Verrier RL, Calvert A, Lown B et al (1974) Effect of acute blood pressure elevation on the ventricular fibrillation threshold. Am J Physiol 226:893–897

    CAS  PubMed  Google Scholar 

  • Verrier RL, Klingenheben T, Malik M et al (2011) Microvolt T-wave alternans: physiologic basis, methods of measurement, and clinical utility. Consensus guideline by the International Society for Holter and Noninvasive Electrocardiology. J Am Coll Cardiol 44:1309–1324

    Article  Google Scholar 

  • Wilde AAM, Bhuiyan ZA, Crotti L et al (2008) Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 358:2024–2029

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Chen LS, Miyauchi Y et al (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Jung BC, Tan AY et al (2008) Spontaneous stellate ganglion nerve activity and ventricular arrhythmias in a canine model of sudden cardiac death. Heart Rhythm 5:131–139

    Article  PubMed  Google Scholar 

  • Zipes DP, Miyazaki T (1990) The autonomic nervous system and the heart: Basis for understanding interactions and effects on arrhythmia development. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology from cell to bedside. WB Saunders, Philadelphia

    Google Scholar 

  • Zuanetti G, DeFerrari GM, Priori SG et al (1987) Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 61:429–435

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Verrier PhD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verrier, R.L., Tan, A.Y. (2015). Role of the Autonomic Nervous System in Ventricular Arrhythmias During Acute Myocardial Ischemia and Infarction. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics