Skip to main content

Autonomic Imaging Cardiotoxicity with [123I]-MIBG: The Effects of Chemotherapy, Monoclonal Antibody Therapy, and Radiotherapy

  • Chapter
  • First Online:
Autonomic Innervation of the Heart
  • 1126 Accesses

Abstract

Anticancer therapy has led to prolonged survival and better quality of life of cancer patients. However, some treatments may have significant adverse cardiotoxic side effects. The current gold standard to evaluate cardiac function in relation to cardiotoxicity is the assessment of the left ventricular ejection fraction, which is reduced only after a certain critical mass of cell damage has occurred. [123I]-labeled metaiodobenzylguanidine ([123I]-MIBG) scintigraphy images the efferent sympathetic nervous innervation of the heart and has successfully been applied for risk stratification, prognosis assessment, and treatment monitoring in patients with congestive heart failure and to predict ventricular arrhythmias. [123I]-MIBG scintigraphy is a promising novel approach for early assessment of cardiotoxicity induced by certain anticancer treatment regimens but still warrants further research. This chapter focuses on the evaluation of the autonomic heart function by [123I]-MIBG for the assessment of cardiotoxicity induced by chemotherapy, monoclonal antibody therapy, or radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[123I]-MIBG:

[123I]-labeled metaiodobenzylguanidine

BNP:

B-type natriuretic peptide

CHF:

Congestive heart failure

EANM:

European Association of Nuclear Medicine

HER2:

Human epidermal growth factor receptor type 2

H/L:

Heart to lung

H/M:

Heart to mediastinum

LVEF:

Left ventricular ejection fraction

MUGA:

Multi-gated radionuclide ventriculography

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

WR:

Washout rate

References

  • Altena R, Perik PJ, van Veldhuisen DJ et al (2009) Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol 10:391–399

    Article  CAS  PubMed  Google Scholar 

  • Bennink RJ, van den Hoff MJ, van Hemert FJ et al (2004) Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 45:842–848

    CAS  PubMed  Google Scholar 

  • Boogers MJ, Borleffs CJ, Henneman MM et al (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55:2769–2777

    Article  PubMed  Google Scholar 

  • Bovelli D, Plataniotis G, Roila F (2010) Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol 21(Suppl 5):v277–v282

    Article  PubMed  Google Scholar 

  • Bristow MR, Mason JW, Billingham ME et al (1981) Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J 102:709–718

    Article  CAS  PubMed  Google Scholar 

  • Carrio I, Cowie MR, Yamazaki J et al (2010) Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 3:92–100

    Google Scholar 

  • Carrio I, Estorch M, Berna L et al (1995) Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 36:2044–2049

    CAS  PubMed  Google Scholar 

  • Chirumamilla A, Travin MI (2011) Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 41:374–387

    Article  PubMed  Google Scholar 

  • Clarke M, Collins R, Darby S et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    Article  CAS  PubMed  Google Scholar 

  • de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L et al (2011) Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med 52:560–571

    PubMed  Google Scholar 

  • de Korte MA, de Vries EG, Lub-De Hooge MN et al (2007) 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer 43:2046–2051

    Article  PubMed  Google Scholar 

  • Di Cosimo S (2011) Heart to heart with trastuzumab: a review on cardiac toxicity. Target Oncol 6:189–195

    Article  PubMed  Google Scholar 

  • Druck MN, Gulenchyn KY, Evans WK et al (1984) Radionuclide angiography and endomyocardial biopsy in the assessment of doxorubicin cardiotoxicity. Cancer 53:1667–1674

    Article  CAS  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 355:1757–1770

    Article  Google Scholar 

  • Ewer MS, Ali MK, Mackay B et al (1984) A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol 2:112–117

    CAS  PubMed  Google Scholar 

  • Flotats A, Carrio I, Agostini D et al (2010) Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 37:1802–1812

    Article  PubMed  Google Scholar 

  • Ganame J, Claus P, Uyttebroeck A et al (2007) Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr 20:1351–1358

    Article  PubMed  Google Scholar 

  • Gillespie HS, McGann CJ, Wilson BD (2011) Noninvasive diagnosis of chemotherapy related cardiotoxicity. Curr Cardiol Rev 7:234–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidendal GA, Bezemer PD, Koopman PA et al (1983) Reproducibility of ejection fraction measurements by gated equilibrium blood pool scintigraphy. Eur J Nucl Med 8:467–470

    Article  CAS  PubMed  Google Scholar 

  • Hiasa G, Hamada M, Saeki H et al (2004) Cardiac sympathetic nerve activity can detect congestive heart failure sensitively in patients with hypertrophic cardiomyopathy. Chest 126:679–686

    Article  PubMed  Google Scholar 

  • Hull MC, Morris CG, Pepine CJ et al (2003) Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 290:2831–2837

    Article  CAS  PubMed  Google Scholar 

  • Jeon TJ, Lee JD, Ha JW et al (2000) Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 27:686–693

    Article  CAS  PubMed  Google Scholar 

  • Lautamaki R, Tipre D, Bengel FM (2007) Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging 34(Suppl 1):S74–S85

    Article  CAS  PubMed  Google Scholar 

  • Lekakis J, Prassopoulos V, Athanassiadis P et al (1996) Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzylguanidine scintigraphy. J Nucl Cardiol 3:37–41

    Article  CAS  PubMed  Google Scholar 

  • Marks LB, Yu X, Prosnitz RG et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63:214–223

    Article  PubMed  Google Scholar 

  • Mavinkurve-Groothuis AM, Kapusta L, Nir A et al (2008) The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol 25:655–664

    Article  CAS  PubMed  Google Scholar 

  • Nousiainen T, Vanninen E, Jantunen E et al (2001) Anthracycline-induced cardiomyopathy: long-term effects on myocardial cell integrity, cardiac adrenergic innervation and fatty acid uptake. Clin Physiol 21:123–128

    Article  CAS  PubMed  Google Scholar 

  • Panjrath GS, Jain D (2006) Monitoring chemotherapy-induced cardiotoxicity: role of cardiac nuclear imaging. J Nucl Cardiol 13:415–426

    Article  PubMed  Google Scholar 

  • Panjrath GS, Jain D (2007) Trastuzumab-induced cardiac dysfunction. Nucl Med Commun 28:69–73

    Article  PubMed  Google Scholar 

  • Paszat LF, Mackillop WJ, Groome PA et al (1998) Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. J Clin Oncol 16:2625–2631

    CAS  PubMed  Google Scholar 

  • Perik PJ, Lub-De Hooge MN, Gietema JA et al (2006) Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 24:2276–2282

    Article  CAS  PubMed  Google Scholar 

  • Rocco TP, Dilsizian V, Fischman AJ et al (1989) Evaluation of ventricular function in patients with coronary artery disease. J Nucl Med 30:1149–1165

    CAS  PubMed  Google Scholar 

  • Russell SD, Blackwell KL, Lawrence J et al (2010) Independent adjudication of symptomatic heart failure with the use of doxorubicin and cyclophosphamide followed by trastuzumab adjuvant therapy: a combined review of cardiac data from the National Surgical Adjuvant breast and Bowel Project B-31 and the North Central Cancer Treatment Group N9831 clinical trials. J Clin Oncol 28:3416–3421

    Article  CAS  PubMed  Google Scholar 

  • Rutqvist LE, Johansson H (1990) Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br J Cancer 61:866–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz RG, McKenzie WB, Alexander J et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Shaikh AY, Shih JA (2012) Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 9:117–127

    Article  CAS  PubMed  Google Scholar 

  • Smith LA, Cornelius VR, Plummer CJ et al (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337

    Article  PubMed Central  PubMed  Google Scholar 

  • Stokkel MP, de Wit-van der Veen LJ, Boekhout A (2013) I-123-MIBG myocardial imaging in trastuzumab-based cardiotoxicity: the first experience. Nucl Med Commun 34:19–24

    Article  CAS  PubMed  Google Scholar 

  • Stoodley PW, Richards DA, Meikle SR et al (2011) The potential role of echocardiographic strain imaging for evaluating cardiotoxicity due to cancer therapy. Heart Lung Circ 20:3–9

    Article  PubMed  Google Scholar 

  • Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  PubMed  Google Scholar 

  • Takano H, Ozawa H, Kobayashi I et al (1995) Atrophic nerve fibers in regions of reduced MIBG uptake in doxorubicin cardiomyopathy. J Nucl Med 36:2060–2061

    CAS  PubMed  Google Scholar 

  • Takano H, Ozawa H, Kobayashi I et al (1996) Myocardial sympathetic dysinnervation in doxorubicin cardiomyopathy. J Cardiol 27:49–55

    CAS  PubMed  Google Scholar 

  • Takeishi Y, Sukekawa H, Sakurai T et al (1994) Noninvasive identification of anthracycline cardiotoxicity: comparison of 123I-MIBG and 123I-BMIPP imaging. Ann Nucl Med 8:177–182

    Article  CAS  PubMed  Google Scholar 

  • Tan-Chiu E, Yothers G, Romond E et al (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23:7811–7819

    Article  CAS  PubMed  Google Scholar 

  • Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF et al (1995) Assessment of anthracycline-related myocardial adrenergic derangement by [123I]metaiodobenzylguanidine scintigraphy. Eur J Cancer 31A:26–31

    Article  CAS  PubMed  Google Scholar 

  • Valdes Olmos RA, ten Bokkel Huinink WW, Dewit LG et al (1996) Iodine-123 metaiodobenzylguanidine in the assessment of late cardiac effects from cancer therapy. Eur J Nucl Med 23:453–458

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi S, Wada A, Hasegawa Y et al (1992) Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. J Nucl Med 33:208–214

    CAS  PubMed  Google Scholar 

  • Wakasugi S, Fischman AJ, Babich JW et al (1993) Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 34:1283–1286

    CAS  PubMed  Google Scholar 

  • Wakasugi S, Inoue M, Tazawa S (1995) Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med 36:2069–2074

    CAS  PubMed  Google Scholar 

  • Walker J, Bhullar N, Fallah-Rad N et al (2010) Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol 28:3429–3436

    Article  PubMed  Google Scholar 

  • Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

  • Yu M, Bozek J, Lamoy M et al (2011) Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 4:435–443

    Article  PubMed  Google Scholar 

  • Yu M, Bozek J, Lamoy M et al (2012) LMI1195 PET imaging in evaluation of regional cardiac sympathetic denervation and its potential role in antiarrhythmic drug treatment. Eur J Nucl Med Mol Imaging 39:1910–1919

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Salm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salm, L.P., Bulten, B.F., Van Laarhoven, H.W.M., De Geus-Oei, L.F. (2015). Autonomic Imaging Cardiotoxicity with [123I]-MIBG: The Effects of Chemotherapy, Monoclonal Antibody Therapy, and Radiotherapy. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics