Skip to main content

Imaging Sympathetic Innervation of the Heart: Therapeutic Strategies SPECT/CT and PET/CT

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

Tracers for radionuclide imaging of cardiac neurotransmission have been developed by radiolabeling true neurotransmitters or corresponding structural analogs (false neurotransmitters). The most commonly used radiopharmaceuticals to assess cardiac neurotransmission are [11C]-metahydroxyephedrine ([11C]-mHED), [11C]-ephedrine, [18F]-dopamine, and [123I]-metaiodobenzylguanidine ([123I]-MIBG), which estimate neuronal presynaptic reuptake (type I uptake) and storage of norepinephrine (NE).

In heart failure (HF), there is impairment of the neuronal uptake of NE in the myocardium due to chronic sympathetic activation. Reduced myocardial uptake of these radiotracers is an indicator of poor prognosis for HF patients. Cardiac adrenergic imaging might be useful as an indicator of whether or not the HF patient’s medical therapy is effective and could therefore help determine whether higher-risk and usually more expensive device therapies or cardiac transplantation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACEI:

Angiotensin-converting enzyme inhibitor

ARB:

Angiotensin receptor blocker

BMC:

Bone marrow cell

BNP:

Brain natriuretic peptide

CAD:

Coronary artery disease

CRT:

Cardiac resynchronization therapy

DCM:

Dilated cardiomyopathy

DM:

Diabetes mellitus

ECG:

Electrocardiogram

EF:

Ejection fraction

EPS:

Electrophysiological studies

HF:

Heart failure

HMR:

Heart to mediastinum ratio

HRV:

Heart rate variability

ICD:

Implantable cardioverter defibrillator

LBBB:

Left bundle branch block

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

MRA:

Mineralocorticoid receptor antagonists

MUGA:

Multiple gated acquisition

NE:

Norepinephrine

NPV:

Negative predictive value

NYHA:

New York Heart Association

PET:

Positron emission tomography

RBBB:

Right bundle branch block

SCA:

Sudden cardiac arrest

SCD:

Sudden cardiac death

SPECT:

Single-photon emission computed tomography

STEMI:

ST-segment elevation myocardial infarct

VT:

Ventricular tachycardia

WR:

Washout rate

References

  • Agostini D, Belin A, Amar MH et al (2000) Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med 41:845–851

    CAS  PubMed  Google Scholar 

  • Arora R, Ferrick KJ, Nakata T et al (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131

    Article  PubMed  Google Scholar 

  • Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverter/defibrillator for congestive heart failure. N Engl J Med 352:225–237

    Article  CAS  PubMed  Google Scholar 

  • Barron HV, Viskin S (1998) Autonomic markers and prediction of cardiac death after myocardial infarction. Lancet 351:461–462

    Article  CAS  PubMed  Google Scholar 

  • Bax JJ, Kraft O, Buxton AE et al (2008) 123I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 1:131–140

    Article  PubMed  Google Scholar 

  • Bengel FM, Ueberfuhr P, Schiepel N et al (2001a) Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: a noninvasive study with positron emission tomography. Circulation 103:1881–1886

    Article  CAS  PubMed  Google Scholar 

  • Bengel FM, Ueberfuhr P, Schiepel N et al (2001b) Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 345:731–738

    Article  CAS  PubMed  Google Scholar 

  • Bengel FM, Higuchi T, Javadi MS et al (2009) Cardiac positron emission tomography. J Am Coll Cardiol 54:1–15

    Article  PubMed  Google Scholar 

  • Boogers MJ, Borleffs CJ, Henneman MM et al (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55:2769–2777

    Article  PubMed  Google Scholar 

  • Burri H, Sunthorn H, Somsen A et al (2008) Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 10:374–378

    Article  PubMed  Google Scholar 

  • Cha Y, Chareonthaitawee P, Dong Y et al (2011) Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circ Heart Fail 4:339–344

    Article  PubMed  Google Scholar 

  • Cohen-Solal A, Rouzet F, Berdeaux A et al (2005) Effects of carvedilol on myocardial sympathetic innervation in patients with chronic heart failure. J Nucl Med 46:1796–1803

    CAS  PubMed  Google Scholar 

  • Cohn JN, Rector TS (1988) Prognosis of congestive heart failure and predictors of mortality. Am J Cardiol 62:25A–30A

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  CAS  PubMed  Google Scholar 

  • Drakos SG, Athanasoulis T, Malliaras KG et al (2010) Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging 3:64–70

    Article  PubMed  Google Scholar 

  • Esler M, Kaye D (2000) Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 5:17–25

    Article  CAS  PubMed  Google Scholar 

  • Fallavollita JA, Luisi AJ Jr, Michalek SM et al (2006) Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods. Contemp Clin Trials 27:374–388

    Article  PubMed  Google Scholar 

  • Fallavollita JA, Heavey BM, Luisi AJ Jr et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63:141–149

    Article  PubMed Central  PubMed  Google Scholar 

  • Francis GS (1986) Development of arrhythmias in the patient with congestive heart failure: pathophysiology, prevalence and prognosis. Am J Cardiol 57:3B–7B

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Hayashida K, Hirose Y et al (1997) Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of ß-blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 24:523

    CAS  Google Scholar 

  • Gerson MC, Craft LL, McGuire N et al (2002) Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol 9:608–615

    Article  PubMed  Google Scholar 

  • Gilbert EM, Sandoval A, Larrabee P et al (1993) Lisinopril lowers cardiac adrenergic drive and increases beta-receptor density in the failing human heart. Circulation 88:472–480

    Article  CAS  PubMed  Google Scholar 

  • Higuchi K, Toyama T, Tada H et al (2006) Usefulness of biventricular pacing to improve cardiac symptoms, exercise capacity and sympathetic nerve activity in patients with moderate to severe chronic heart failure. Circulation 70:703–709

    Article  Google Scholar 

  • Hohnloser SH, Connolly SJ, Kuck KH et al (2000) The defibrillator in acute myocardial infarction trial (DINAMIT): study protocol. Am Heart J 140:735–739

    Article  CAS  PubMed  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH et al (2009) Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: Developed in Collaboration With the International Society for Heart and Lung Transplantation. Circulation 119:e391–e479

    Article  PubMed  Google Scholar 

  • Jacobson AF, Senior R, Cerqueira MD et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  • Kadish A, Dyer A, Daubert JP et al (2004) Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 350:2151–2158

    Article  CAS  PubMed  Google Scholar 

  • Kasama S, Toyama T, Kumakura H et al (2003) Effect of spironolactone on cardiac sympathetic nerve activity and left ventricular remodeling in patients with dilated cardiomyopathy. J Am Coll Cardiol 41:574–581

    Article  CAS  PubMed  Google Scholar 

  • Kasama S, Toyama T, Kumakura H et al (2005) Effects of candesartan on cardiac sympathetic nerve activity in patients with congestive heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 45:661–667

    Article  CAS  PubMed  Google Scholar 

  • Kasama S, Toyama T, Hatori T et al (2007) Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J 28:989–995

    Article  CAS  PubMed  Google Scholar 

  • Kasama S, Toyama T, Sumino H et al (2008) Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 49:907–914

    Article  PubMed  Google Scholar 

  • Kelesidis I, Travin M (2012) Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death. J Nucl Cardiol 19:142–152

    Article  PubMed  Google Scholar 

  • Knuuti J, Sipola P (2005) Is it time for cardiac innervation imaging? Q J Nucl Med Mol Imaging 49:97–105

    CAS  PubMed  Google Scholar 

  • Lotze U, Kaepplinger S, Kober A et al (2001) Recovery of the cardiac adrenergic nervous system after long-term β-blocker therapy in idiopathic dilated cardiomyopathy: assessment by increase in myocardial 123I-metaiodobenzylguanidine uptake. J Nucl Med 42:49–54

    CAS  PubMed  Google Scholar 

  • Mäki MT, Koskenvuo JW, Ukkonen H et al (2012) Cardiac function, perfusion, metabolism, and innervation following autologous stem cell therapy for acute ST-elevation myocardial infarction. A FINCELL-INSIGHT Sub-study with PET and MRI. Front Physiol 3:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsui T, Tsutamoto T, Maeda K et al (2002) Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments – comparison with neurohumoral factors. Circulation 66:537–543

    Article  Google Scholar 

  • Matsunari I, Schricke U, Bengel FM et al (2000) Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 101:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Matsunari I, Aoki H, Nomura Y et al (2010) Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3:595–603

    Article  PubMed  Google Scholar 

  • McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  • Moss AJ, Hall WJ, Cannom DS et al (1996) Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med 335:1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Nagahara D, Nakata T, Hashimoto A et al (2008) Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 49:225–233

    Article  PubMed  Google Scholar 

  • Najem B, Unger P, Preumont N et al (2006) Sympathetic control after cardiac resynchronization therapy: responders versus nonresponders. Am J Physiol Heart Circ Physiol 291:H2647–H2652

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Wakabayashi T, Kyuma M et al (2005) Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure. Eur J Nucl Med Mol Imaging 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Kuge YF, Seki KF et al (2004) Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(-)11C]CGP-12177, a radioligand for beta-adrenoreceptors. Nucl Med Commun 25:845–849

    Article  CAS  PubMed  Google Scholar 

  • Nishioka SAD, Martinelli Filho M, Brandão SCS et al (2007) Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol 14:852–859

    Article  PubMed  Google Scholar 

  • Nishisato K, Hashimoto A, Nakata T et al (2010) Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs. J Nucl Med 51:1241–1249

    Article  PubMed  Google Scholar 

  • Nolan J, Batin PD, Andrews R et al (1998) Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 98:1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Noordzij W, Tio RA, Maass AH, Willemsen ATM et al (2014) The role of 11C-mHED for sympathetic innervation in heart failure patients treated with cardiac resynchronization therapy: a pilot study. Clin Nucl Med (in press)

    Google Scholar 

  • Rector TS, Olivari MT, Barry Levine T et al (1987) Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 114:148–152

    Article  CAS  PubMed  Google Scholar 

  • Rispler S, Frenkel A, Kuptzov E et al (2013) Quantitative 123I-MIBG SPECT/CT assessment of cardiac sympathetic innervation–a new diagnostic tool for heart failure. Int J Cardiol 168:1556–1558

    Article  PubMed  Google Scholar 

  • Scholtens AM, Braat AJAT, Tuinenburg A et al (2013) Cardiac sympathetic innervation and cardiac resynchronization therapy. Heart Fail Rev. doi:10.1007/s1074101394000

    Google Scholar 

  • Schwaiger M, Kalff V, Rosenspire K et al (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82:457–464

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger M, Hutchins GD, Kalff V et al (1991) Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 87:1681–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara T, Takahashi N, Saito S et al (2011) Effect of cardiac resynchronization therapy on cardiac sympathetic nervous dysfunction and serum C-reactive protein level. Pacing Clin Electrophysiol 34:1225–1230

    Article  PubMed  Google Scholar 

  • Somsen GA, van Vlies B, de Milliano PA et al (1996) Increased myocardial 123I]-metaiodobenzylguanidine uptake after enalapril treatment in patients with chronic heart failure. Heart 76:218–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suwa M, Otake Y, Moriguchi A et al (1997) Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to β-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 133:353–358

    Article  CAS  PubMed  Google Scholar 

  • Tachikawa H, Kodama M, Watanabe K et al (2005) Amiodarone improves cardiac sympathetic nerve function to hold norepinephrine in the heart, prevents left ventricular remodeling, and improves cardiac function in rat dilated cardiomyopathy. Circulation 111:894–899

    Article  CAS  PubMed  Google Scholar 

  • Takeishi Y, Atsumi H, Fujiwara S et al (1997) ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 38:1085–1089

    CAS  PubMed  Google Scholar 

  • Tamaki S, Yamada T, Okuyama Y et al (2009) Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 53:426–435

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Tatsumi K, Fujiwara S et al (2012) Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circulation 76:382–389

    Article  Google Scholar 

  • Toyama T, Hoshizaki H, Seki R et al (2004) Efficacy of amiodarone treatment on cardiac symptom, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with β-blocker therapy. J Nucl Cardiol 11:134–141

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Alexanderson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexanderson, E., Flotats, A., Juárez-Orozco, L.E. (2015). Imaging Sympathetic Innervation of the Heart: Therapeutic Strategies SPECT/CT and PET/CT. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics