Skip to main content

PET Imaging of Myocardial β-Adrenoceptors

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

β-adrenoceptors are important in the regulation of heart function and have been studied extensively in recent decades. In vitro studies have shown downregulation of β-adrenoceptor density in heart failure and cardiac conditions that may lead to heart failure.

Novel methods have been developed to measure β-adrenoceptors in vivo with the use of positron emission tomography (PET). A PET study with the radioligand [11C]-CGP-12177 has shown promising results and measurements of β-adrenoceptor density with [11C]-CGP-12177 were shown to be reproducible and in agreement with in vitro studies. [11C]-CGP-12388 using a simpler method of radiochemical synthesis has been presented as an alternative. Also, transportable [18F]-labeled PET ligands are in development and applicable for more general use in PET centers lacking a cyclotron. Most PET studies with CGP radioligands were performed in the 1990s. The main limitation of [11C]-CGP-12177 and [11C]-CGP-12388, besides the troublesome production of the former, is the lack of subtype selectivity. Future perspectives may include the development of subtype-selective β-adrenergic receptor ligands to obtain more information about the pathophysiological role of the different subpopulations in vivo.

Using the full potential of PET, performance of regional measurements and longitudinal studies might add further knowledge to the pathophysiological role of the β-adrenoceptor in cardiac disease and the effect of interventions. This chapter will give an overview of the background of different β-adrenergic receptor types, their role in cardiac diseases, current PET imaging possibilities of the β-adrenergic receptor, and new developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRT:

Cardiac synchronization therapy

DCM:

Dilated cardiomyopathy

eNOS:

Endothelial isoform of NO synthase

ICD:

Implantable cardioverter defibrillator

IDC:

Idiopathic dilated cardiomyopathy

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

NO:

Nitric oxide

PET:

Positron emission tomography

References

  • Aurbach GD, Fedak SA, Woodard CJ et al (1974) Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science 186:1223–1224

    CAS  PubMed  Google Scholar 

  • Berridge MS, Nelson AD, Zheng L et al (1994) Specific beta-adrenergic receptor binding of carazolol measured with PET. J Nucl Med 35:1665–1676

    CAS  PubMed  Google Scholar 

  • Bohm M, Beuckelmann D, Brown L et al (1988) Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9:844–852

    CAS  PubMed  Google Scholar 

  • Bristow MR (1984) Myocardial beta-adrenergic receptor downregulation in heart failure. Int J Cardiol 5:648–652

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Umans V et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    CAS  PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD et al (1989) Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35:295–303

    CAS  PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD et al (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82:I12–I25

    CAS  PubMed  Google Scholar 

  • Bristow MR, Anderson FL, Port JD et al (1991) Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039

    CAS  PubMed  Google Scholar 

  • Bristow MR, Minobe W, Rasmussen R et al (1992) Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest 89:803–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brodde OE (1990) Beta- and alpha-adrenoceptor-agonists and -antagonists in chronic heart failure. Basic Res Cardiol 85(Suppl 1):57–66

    PubMed  Google Scholar 

  • Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    CAS  PubMed  Google Scholar 

  • Brodde OE (1993) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60:405–430

    CAS  PubMed  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    CAS  PubMed  Google Scholar 

  • Brodde OE, O’Hara N, Zerkowski HR et al (1984) Human cardiac beta-adrenoceptors: both beta 1- and beta 2-adrenoceptors are functionally coupled to the adenylate cyclase in right atrium. J Cardiovasc Pharmacol 6:1184–1191

    CAS  PubMed  Google Scholar 

  • Brodde OE, Michel MC, Gordon EP et al (1989) Beta-adrenoceptor regulation in the human heart: can it be monitored in circulating lymphocytes? Eur Heart J 10(Suppl B):2–10

    CAS  PubMed  Google Scholar 

  • Brodde OE, Khamssi M, Zerkowski HR (1991) Beta-adrenoceptors in the transplanted human heart: unaltered beta-adrenoceptor density, but increased proportion of beta 2-adrenoceptors with increasing posttransplant time. Naunyn Schmiedebergs Arch Pharmacol 344:430–436

    CAS  PubMed  Google Scholar 

  • Brodde OE, Broede A, Daul A et al (1992a) Receptor systems in the non-failing human heart. Basic Res Cardiol 87(Suppl 1):1–14

    CAS  PubMed  Google Scholar 

  • Brodde OE, Hillemann S, Kunde K et al (1992b) Receptor systems affecting force of contraction in the human heart and their alterations in chronic heart failure. J Heart Lung Transplant 11:S164–S174

    CAS  PubMed  Google Scholar 

  • Brodde OE, Vogelsang M, Broede A et al (1998) Diminished responsiveness of Gs-coupled receptors in severely failing human hearts: no difference in dilated versus ischemic cardiomyopathy. J Cardiovasc Pharmacol 31:585–594

    CAS  PubMed  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K et al (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    CAS  PubMed  Google Scholar 

  • Brouwers FP, de Boer RA, van der Harst P et al (2013) Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J 34:1424–1431

    CAS  PubMed  Google Scholar 

  • Bruckner R, Meyer W, Mugge A et al (1984) Alpha-adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol 99:345–347

    CAS  PubMed  Google Scholar 

  • Brunner-La Rocca HP, Esler MD, Jennings GL et al (2001) Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 22:1136–1143

    CAS  PubMed  Google Scholar 

  • Brush JE Jr, Eisenhofer G, Garty M et al (1989) Cardiac norepinephrine kinetics in hypertrophic cardiomyopathy. Circulation 79:836–844

    PubMed  Google Scholar 

  • Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41

    PubMed Central  PubMed  Google Scholar 

  • Buxton IL, Brunton LL (1985) Direct analysis of beta-adrenergic receptor subtypes on intact adult ventricular myocytes of the rat. Circ Res 56:126–132

    CAS  PubMed  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP et al (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  • Bylund DB, Bond RA, Clarke DE, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman PB, Milinoff PB, Ruffolo RR, Strosberg AD, Trendelenburg UG (1998) Adrenoceptors. In: Bylund DB, Bond RA, Clarke DE, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman PB, Milinoff PB, Ruffolo RR, Strosberg AD, Trendelenburg UG (eds) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media, London, pp 58–74

    Google Scholar 

  • Caldwell JH, Link JM, Levy WC et al (2008) Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 49:234–241

    PubMed  Google Scholar 

  • Chakir K, Daya SK, Aiba T et al (2009) Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy. Circulation 119:1231–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury L, Guzzetti S, Lefroy DC et al (1996a) Myocardial beta adrenoceptors and left ventricular function in hypertrophic cardiomyopathy. Heart 75:50–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury L, Rosen SD, Lefroy DC et al (1996b) Myocardial beta adrenoceptor density in primary and secondary left ventricular hypertrophy. Eur Heart J 17:1703–1709

    CAS  PubMed  Google Scholar 

  • Colucci WS, Alexander RW, Williams GH et al (1981) Decreased lymphocyte beta-adrenergic-receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist pirbuterol. N Engl J Med 305:185–190

    CAS  PubMed  Google Scholar 

  • de Jong RM, Willemsen AT, Slart RH et al (2005) Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 32:443–447

    PubMed  Google Scholar 

  • Delforge J, Syrota A, Lancon JP et al (1991) Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 32:739–748

    CAS  PubMed  Google Scholar 

  • Delforge J, Mesangeau D, Dolle F et al (2002) In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 43:215–226

    CAS  PubMed  Google Scholar 

  • Doze P, van Waarde A, Elsinga PH et al (1998) Validation of S-1′-[18F]fluorocarazolol for in vivo imaging and quantification of cerebral beta-adrenoceptors. Eur J Pharmacol 353:215–226

    CAS  PubMed  Google Scholar 

  • Doze P, Elsinga PH, van Waarde A et al (2002) Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 29:295–304

    CAS  PubMed  Google Scholar 

  • Dzimiri N (1999) Regulation of beta-adrenoceptor signaling in cardiac function and disease. Pharmacol Rev 51:465–501

    CAS  PubMed  Google Scholar 

  • Elnatan J, Molenaar P, Rosenfeldt FL et al (1994) Autoradiographic localization and quantitation of beta 1- and beta 2-adrenoceptors in the human atrioventricular conducting system: a comparison of patients with idiopathic dilated cardiomyopathy and ischemic heart disease. J Mol Cell Cardiol 26:313–323

    CAS  PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Visser GM et al (1994) Synthesis and preliminary evaluation of (R, S)-1-[2-((carbamoyl-4-hydroxy)phenoxy)-ethylamino]-3-[4-(1-[11C]-met hyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol ([11C]CGP 20712A) as a selective beta 1-adrenoceptor ligand for PET. Nucl Med Biol 21:211–217

    CAS  PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Jaeggi KA et al (1997) Synthesis and evaluation of (S)-4-(3-(2′-[11C]isopropylamino)-2-hydroxypropoxy) -2H-benzimidazol -2-one ((S)-[11C]CGP 12388) and (S)-4-(3-((1′-[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy) -2H- benzimidazol-2-one ((S)-[18F]fluoro-CGP 12388) for visualization of beta-adrenoceptors with positron emission tomography. J Med Chem 40:3829–3835

    CAS  PubMed  Google Scholar 

  • Elsinga PH, van Waarde A, Visser TJ et al (1998) Visualization of beta-adrenoceptors using PET. Clin Positron Imaging 1:81–94

    PubMed  Google Scholar 

  • Elsinga PH, Doze P, van Waarde A et al (2001) Imaging of beta-adrenoceptors in the human thorax using (S)-[(11)C]CGP12388 and positron emission tomography. Eur J Pharmacol 433:173–176

    CAS  PubMed  Google Scholar 

  • Engelhardt S, Bohm M, Erdmann E et al (1996) Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27:146–154

    CAS  PubMed  Google Scholar 

  • Farrukh HM, White M, Port JD et al (1993) Up-regulation of beta 2-adrenergic receptors in previously transplanted, denervated nonfailing human hearts. J Am Coll Cardiol 22:1902–1908

    CAS  PubMed  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F et al (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauthier C, Leblais V, Kobzik L et al (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    CAS  PubMed  Google Scholar 

  • Hall JA, Petch MC, Brown MJ (1991) In vivo demonstration of cardiac beta 2-adrenoreceptor sensitization by beta 1-antagonist treatment. Circ Res 69:959–964

    CAS  PubMed  Google Scholar 

  • Hall JA, Ferro A, Dickerson JE et al (1993) Beta adrenoreceptor subtype cross regulation in the human heart. Br Heart J 69:332–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes MJ, Qing F, Rhodes CG et al (1996) In vivo quantification of human pulmonary beta-adrenoceptors: effect of beta-agonist therapy. Am J Respir Crit Care Med 154:1277–1283

    CAS  PubMed  Google Scholar 

  • Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944

    PubMed  Google Scholar 

  • Heyliger CE, Pierce GN, Singal PK et al (1982) Cardiac alpha- and beta-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 77:610–618

    CAS  PubMed  Google Scholar 

  • Ihl-Vahl R, Eschenhagen T, Kubler W et al (1996) Differential regulation of mRNA specific for beta 1- and beta 2-adrenergic receptors in human failing hearts. Evaluation of the absolute cardiac mRNA levels by two independent methods. J Mol Cell Cardiol 28:1–10

    CAS  PubMed  Google Scholar 

  • Iwata M, Yoshikawa T, Baba A et al (2001a) Autoantibodies against the second extracellular loop of beta1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 37:418–424

    CAS  PubMed  Google Scholar 

  • Iwata M, Yoshikawa T, Baba A et al (2001b) Autoimmunity against the second extracellular loop of beta(1)-adrenergic receptors induces beta-adrenergic receptor desensitization and myocardial hypertrophy in vivo. Circ Res 88:578–586

    CAS  PubMed  Google Scholar 

  • Jhund PS, Macintyre K, Simpson CR et al (2009) Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation 119:515–523

    PubMed  Google Scholar 

  • John AS, Mongillo M, Depre C et al (2007) Pre- and post-synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging 34:1973–1980

    PubMed  Google Scholar 

  • Kaumann AJ, Molenaar P (1997) Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn Schmiedebergs Arch Pharmacol 355:667–681

    CAS  PubMed  Google Scholar 

  • Kaumann AJ, Hall JA, Murray KJ et al (1989) A comparison of the effects of adrenaline and noradrenaline on human heart: the role of beta 1- and beta 2-adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur Heart J 10(Suppl B):29–37

    CAS  PubMed  Google Scholar 

  • Kawai C, Yui Y, Hoshino T et al (1983) Myocardial catecholamines in hypertrophic and dilated (congestive) cardiomyopathy: a biopsy study. J Am Coll Cardiol 2:834–840

    CAS  PubMed  Google Scholar 

  • Kenk M, Thackeray JT, Thorn SL et al (2010) Alterations of pre- and postsynaptic noradrenergic signaling in a rat model of adriamycin-induced cardiotoxicity. J Nucl Cardiol 17:254–263

    PubMed  Google Scholar 

  • Law MP, Wagner S, Kopka K et al (2010) Preclinical evaluation of an 18F-labelled beta1-adrenoceptor selective radioligand based on ICI 89,406. Nucl Med Biol 37:517–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lefkowitz RJ, Mukherjee C, Coverstone M et al (1974) Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun 60:703–709

    CAS  PubMed  Google Scholar 

  • Lefroy DC, De Silva R, Choudhury L et al (1993) Diffuse reduction of myocardial beta-adrenoceptors in hypertrophic cardiomyopathy: a study with positron emission tomography. J Am Coll Cardiol 22:1653–1660

    CAS  PubMed  Google Scholar 

  • Link JM, Stratton JR, Levy W et al (2003) PET measures of pre- and post-synaptic cardiac beta adrenergic function. Nucl Med Biol 30:795–803

    CAS  PubMed  Google Scholar 

  • Lloyd-Jones DM, Larson MG, Leip EP et al (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106:3068–3072

    PubMed  Google Scholar 

  • Magnusson Y, Wallukat G, Waagstein F et al (1994) Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta 1-adrenoceptor with positive chronotropic effect. Circulation 89:2760–2767

    CAS  PubMed  Google Scholar 

  • Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science 230:183–186

    CAS  PubMed  Google Scholar 

  • Majmudar MD, Nahrendorf M (2012) Cardiovascular molecular imaging: the road ahead. J Nucl Med 53:673–676

    PubMed Central  PubMed  Google Scholar 

  • Merlet P, Delforge J, Syrota A et al (1993) Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 87:1169–1178

    CAS  PubMed  Google Scholar 

  • Metra M, Giubbini R, Nodari S et al (2000) Differential effects of beta-blockers in patients with heart failure: a prospective, randomized, double-blind comparison of the long-term effects of metoprolol versus carvedilol. Circulation 102:546–551

    CAS  PubMed  Google Scholar 

  • Moniotte S, Kobzik L, Feron O et al (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655

    CAS  PubMed  Google Scholar 

  • Motomura S, Deighton NM, Zerkowski HR et al (1990) Chronic beta 1-adrenoceptor antagonist treatment sensitizes beta 2-adrenoceptors, but desensitizes M2-muscarinic receptors in the human right atrium. Br J Pharmacol 101:363–369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nantel F, Bonin H, Emorine LJ et al (1993) The human beta 3-adrenergic receptor is resistant to short term agonist-promoted desensitization. Mol Pharmacol 43:548–555

    CAS  PubMed  Google Scholar 

  • Naya M, Tsukamoto T, Morita K et al (2009) Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med 50:220–225

    CAS  PubMed  Google Scholar 

  • Ohte N, Narita H, Iida A et al (2012) Cardiac beta-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodeling. Eur J Nucl Med Mol Imaging 39:1246–1253

    PubMed  Google Scholar 

  • Pitschner HF, Droege A, Mitze M et al (1993) Down-regulated beta-adrenoceptors in severely failing human ventricles: uniform regional distribution, but no increased internalization. Basic Res Cardiol 88:179–191

    CAS  PubMed  Google Scholar 

  • Pott C, Brixius K, Bloch W et al (2006) Beta3-adrenergic stimulation in the human heart: signal transduction, functional implications and therapeutic perspectives. Pharmazie 61:255–260

    CAS  PubMed  Google Scholar 

  • Qing F, Rahman SU, Hayes MJ et al (1997a) Effect of long-term beta2-agonist dosing on human cardiac beta-adrenoceptor expression in vivo: comparison with changes in lung and mononuclear leukocyte beta-receptors. J Nucl Cardiol 4:532–538

    CAS  PubMed  Google Scholar 

  • Qing F, Rahman SU, Rhodes CG et al (1997b) Pulmonary and cardiac beta-adrenoceptor density in vivo in asthmatic subjects. Am J Respir Crit Care Med 155:1130–1134

    CAS  PubMed  Google Scholar 

  • Rathi S, Deedwania PC (2012) The epidemiology and pathophysiology of heart failure. Med Clin North Am 96:881–890

    CAS  PubMed  Google Scholar 

  • Rhee HM, Tyler L (1985) Myocardial ischemic injury and beta-adrenergic receptors in perfused working rabbit hearts. Adv Exp Med Biol 191:281–288

    CAS  PubMed  Google Scholar 

  • Rosen SD, Boyd H, Rhodes CG et al (1996) Myocardial beta-adrenoceptor density and plasma catecholamines in syndrome X. Am J Cardiol 78:37–42

    CAS  PubMed  Google Scholar 

  • Ruffolo RR Jr, Kopia GA (1986) Importance of receptor regulation in the pathophysiology and therapy of congestive heart failure. Am J Med 80:67–72

    PubMed  Google Scholar 

  • Schafers M, Lerch H, Wichter T et al (1998) Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 32:181–186

    CAS  PubMed  Google Scholar 

  • Staehelin M, Simons P, Jaeggi K et al (1983) CGP-12177. A hydrophilic beta-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J Biol Chem 258:3496–3502

    CAS  PubMed  Google Scholar 

  • Steinfath M, Lavicky J, Schmitz W et al (1992a) Regional distribution of beta 1- and beta 2-adrenoceptors in the failing and nonfailing human heart. Eur J Clin Pharmacol 42:607–611

    CAS  PubMed  Google Scholar 

  • Steinfath M, von der Leyen H, Hecht A et al (1992b) Decrease in beta 1- and increase in beta 2-adrenoceptors in long-term follow-up after orthotopic cardiac transplantation. J Mol Cell Cardiol 24:1189–1198

    CAS  PubMed  Google Scholar 

  • Thackeray JT, Parsa-Nezhad M, Kenk M et al (2011) Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol 38:1059–1066

    CAS  PubMed  Google Scholar 

  • Tseng H, Link JM, Stratton JR et al (2001) Cardiac receptor physiology and its application to clinical imaging: present and future. J Nucl Cardiol 8:390–409

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Morita K, Naya M et al (2007) Decreased myocardial beta-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med 48:1777–1782

    CAS  PubMed  Google Scholar 

  • Ungerer M, Hartmann F, Karoglan M et al (1998) Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 97:174–180

    CAS  PubMed  Google Scholar 

  • van Waarde A, Elsinga PH, Brodde OE et al (1995) Myocardial and pulmonary uptake of S-1′-[18F]fluorocarazolol in intact rats reflects radioligand binding to beta-adrenoceptors. Eur J Pharmacol 272:159–168

    PubMed  Google Scholar 

  • Visser TJ, van Waarde A, van der Mark TW et al (1997) Characterization of pulmonary and myocardial beta-adrenoceptors with S-1′-[fluorine-18]fluorocarazolol. J Nucl Med 38:169–174

    CAS  PubMed  Google Scholar 

  • Watson-Wright WM, Armour JA, Johnstone DE et al (1989) Myocardial slice: a physiological approach to beta-adrenergic ([3H] CGP-12177) receptor binding in hamster and guinea pig heart. J Pharmacol Methods 22:37–47

    CAS  PubMed  Google Scholar 

  • Wichter T, Schafers M, Rhodes CG et al (2000) Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 101:1552–1558

    CAS  PubMed  Google Scholar 

  • Williams RS, Schaible TF, Scheuer J et al (1983) Effects of experimental diabetes on adrenergic and cholinergic receptors of rat myocardium. Diabetes 32:881–886

    CAS  PubMed  Google Scholar 

  • Zhao Q, Wu TG, Jiang ZF et al (2007) Effect of beta-blockers on beta3-adrenoceptor expression in chronic heart failure. Cardiovasc Drugs Ther 21:85–90

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riemer H. J. A. Slart MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slart, R.H.J.A., van der Meer, P., Tio, R.A., van Veldhuisen, D.J., Elsinga, P.H. (2015). PET Imaging of Myocardial β-Adrenoceptors. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics