Skip to main content

Leptospiral Structure, Physiology, and Metabolism

  • Chapter
  • First Online:
Leptospira and Leptospirosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 387))

Abstract

Members of the family Leptospiraceae are thin, spiral, highly motile bacteria that are best visualized by darkfield microscopy . These characteristics are shared with other members of the Order Spirochaetales, but few additional parallels exist among spirochetes. This chapter describes basal features of Leptospira that are central to survival and, in the case of pathogenic leptospiral species, intimately linked with pathogenesis, including its morphology, characteristic motility , and unusual metabolism. This chapter also describes the general methodology and critical requirements for in vitro cultivation and storage of Leptospira within a laboratory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baseman JB, Cox CD (1969) Terminal electron transport in Leptospira. J Bacteriol 97:1001–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolin C Unpublished observations

    Google Scholar 

  • Bromley DB, Charon NW (1979) Axial filament involvement in the motility of Leptospira interrogans. J Bacteriol 137:1406–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bulach DM, Zuerner RL, Wilson P et al (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103:14560–14565

    Article  PubMed Central  PubMed  Google Scholar 

  • Carleton O, Charon NW, Allender P et al (1979) Helix handedness of Leptospira interrogans as determined by scanning electron microscopy. J Bacteriol 137:1413–1416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty A, Miyahara S, Villanueva SY et al (2011) A novel combination of selective agents for isolation of Leptospira species. Microbiol Immunol 55:494–501

    Article  CAS  PubMed  Google Scholar 

  • Charon NW, Goldstein SF (2002) Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann Rev Genet 36:47–73

    Article  CAS  PubMed  Google Scholar 

  • Charon NW, Lawrence CW, O’Brien S (1981) Movement of antibody-coated latex beads attached to the spirochete Leptospira interrogans. Proc Natl Acad Sci USA 78:7166–7170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corin RE, Boggs E, Cox CD (1978) Enzymatic degradation of H2O2 by Leptospira. Infect Immun 22:672–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellinghausen HC Jr, McCullough WG (1965) Nutrition of Leptospira pomona and growth of 13 other serotypes: fractionation of oleic albumin complex and a medium of bovine albumin and polysorbate 80. Am J Vet Res 26:45–51

    CAS  PubMed  Google Scholar 

  • Ellis WA, Hovind-Hougen K, Moller S et al (1983) Morphological changes upon subculturing of freshly isolated strains of Leptospira interrogans serovar Hardjo. Zentralbl Bakteriol Mikrobiol Hyg A 255:323–335

    CAS  PubMed  Google Scholar 

  • Ellis WA, Thiermann AB (1986) Isolation of Leptospira interrogans serovar bratislava from sows in Iowa. Am J Vet Res 47:1458–1460

    CAS  PubMed  Google Scholar 

  • Eshghi A, Lourdault K, Murray GL et al (2012) Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 80:3892–3899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evangelista KV, Coburn J (2010) Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol 5:1413–1425

    Article  PubMed Central  PubMed  Google Scholar 

  • Faine S (1959) Iron as a growth requirement for pathogenic Leptospira. J Gen Microbiol 20:246–251

    Article  CAS  PubMed  Google Scholar 

  • Faine S (1994) Leptospira and leptospirosis. CRC Press, Boca Raton

    Google Scholar 

  • Faine S, Adler B, Bolin C et al (1999) Leptospira and leptospirosis. MedSci, Melbourne

    Google Scholar 

  • Goldstein SF, Charon NW (1988) Motility of the spirochete Leptospira. Cell Motil Cytoskelet 9:101–110

    Article  CAS  Google Scholar 

  • Goldstein SF, Charon NW (1990) Multiple-exposure photographic analysis of a motile spirochete. Proc Natl Acad Sci USA 87:4895–4899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haake DA (2006). The hamster model of leptospirosis. Current protocol microbiology chapter 12, unit 12E.2

    Google Scholar 

  • Henneberry RC, Cox CD (1970) Beta-oxidation of fatty acids by Leptospira. Can J Microbiol 16:41–45

    Article  CAS  PubMed  Google Scholar 

  • Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hovind-Hougen K (1976) Determination by means of electron microscopy of morphological criteria of value for classification of some spirochetes, in particular treponemes. Acta Pathol Microbiol Scand Suppl 255:1–41

    PubMed  Google Scholar 

  • Johnson RC, Harris VG (1967) Differentiation of pathogenic and saprophytic leptospires. I. Growth at low temperatures. J Bacteriol 94:27–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RC, Harris VG, Walby JK (1969) Characterization of leptospires according to fatty acid requirements. J Gen Microbiol 55:399–407

    Article  CAS  PubMed  Google Scholar 

  • Johnson RC, Livermore BP, Walby JK et al (1970) Lipids of parasitic and saprophytic leptospires. Infect Immun 2:286–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RC, Rogers P (1964) Differentiation of pathogenic and saprophytic leptospires with 8-azaguanine. J Bacteriol 88:1618–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadis S, Pugh WL (1974) Urea utilization by Leptospira. Infect Immun 10:793–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiser GE, Doetsch RN (1975) Letter: enhanced translational motion of Leptospira in viscous environments. Nature 255:656–657

    Article  CAS  PubMed  Google Scholar 

  • Kayser A, Adrian M (1978) Spirochetes: coiling direction. Ann Microbiol (Paris) 129:351–360

    CAS  Google Scholar 

  • Kefford B, Marshall KC (1984) Adhesion of Leptospira at a solid-liquid interface: a model. Arch Microbiol 138:84–88

    Article  CAS  PubMed  Google Scholar 

  • Khisamov GZ, Morozova NK (1988) Fatty acids as resource of carbon for leptospirae. J Hyg Epidemiol Microbiol Immunol 32:87–93

    CAS  PubMed  Google Scholar 

  • Korthof G (1932) Experimentelles Schlammfieber beim Menschen. Zentralbl Bakteriol, Parasitenkunde Hyg Abt I 125:429–434

    Google Scholar 

  • Lambert A, Picardeau M, Haake DA et al (2012) FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect Immun 80:2019–2025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence JJ (1951) The growth of Leptospirae in semi-solid media. Aust J Exp Biol Med Sci 29:195–199

    Article  CAS  PubMed  Google Scholar 

  • Li C, Motaleb A, Sal M et al (2000) Spirochete periplasmic flagella and motility. J Mol Microbiol Biotechnol 2:345–354

    CAS  PubMed  Google Scholar 

  • Li C, Wolgemuth CW, Marko M et al (2008) Genetic analysis of spirochete flagellin proteins and their involvement in motility, filament assembly, and flagellar morphology. J Bacteriol 190:5607–5615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao S, Sun A, Ojcius DM et al (2009) Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 9:253

    Article  PubMed Central  PubMed  Google Scholar 

  • Malmstrom J, Beck M, Schmidt A et al (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762–765

    Article  PubMed Central  PubMed  Google Scholar 

  • Motaleb MA, Corum L, Bono JL et al (2000) Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci USA 97:10899–10904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murray GL, Srikram A, Henry R et al (2010) Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 78:701–709

    Article  CAS  PubMed  Google Scholar 

  • Nahori MA, Fournie-Amazouz E, Que-Gewirth NS et al (2005) Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 175:6022–6031

    Article  CAS  PubMed  Google Scholar 

  • Nascimento AL, Ko AI, Martins EA et al (2004a) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nascimento AL, Verjovski-Almeida S, Van Sluys MA et al (2004b) Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 37:459–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palit A, Haylock LM, Cox JC (1986) Storage of pathogenic leptospires in liquid nitrogen. J Appl Bacteriol 61:407–411

    Article  CAS  PubMed  Google Scholar 

  • Petrino MG, Doetsch RN (1978) ‘Viscotaxis’, a new behavioural response of Leptospira interrogans (biflexa). strain B16. J Gen Microbiol 109:113–117

    Article  CAS  PubMed  Google Scholar 

  • Picardeau M, Brenot A, Saint Girons I (2001) First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40:189–199

    Google Scholar 

  • Picardeau M, Bulach DM, Bouchier C et al (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3:e1607

    Article  PubMed Central  PubMed  Google Scholar 

  • Raddi G, Morado DR, Yan J et al (2012) Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J Bacteriol 194:1299–1306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren SX, Fu G, Jiang XG et al (2003) Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893

    Article  CAS  PubMed  Google Scholar 

  • Ricaldi JN, Fouts DE, Selengut JD et al (2012) Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis 6:e1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samir A, Wasfy MO (2013) A simple technique for long-term preservation of leptospires. J Basic Microbiol 53:299–301

    Article  PubMed  Google Scholar 

  • Shenberg E (1967) Growth of pathogenic Leptospira in chemically defined media. J Bacteriol 93:1598–1606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slamti L, de Pedro MA, Guichet E et al (2011) Deciphering morphological determinants of the helix-shaped Leptospira. J Bacteriol 193:6266–6275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stalheim OH, Wilson JB (1964a) Cultivation of Leptosirae. I. Nutrition of Leptospira canicola. J Bacteriol 88:48–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stalheim OH, Wilson JB (1964b) Cultivation of Leptospirae. II. Growth and lysis in synthetic medium. J Bacteriol 88:55–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staneck JL, Henneberry RC, Cox CD (1973) Growth requirements of pathogenic Leptospira. Infect Immun 7:886–897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stern N, Shenberg E, Tietz A (1969) Studies on the metabolism of fatty acids in Leptospira: the biosynthesis of delta 9- and delta 11-monounsaturated acids. Eur J Biochem 8:101–108

    Article  CAS  PubMed  Google Scholar 

  • Stuart RD (1946) The preparation and use of a simple culture medium for leptospirae. J Pathol Bacteriol 58:343–349

    Article  CAS  PubMed  Google Scholar 

  • Takabe K, Nakamura S, Ashihara M et al (2013) Effect of osmolarity and viscosity on the motility of pathogenic and saprophytic Leptospira. Microbiol Immunol 57:236–239

    Article  CAS  PubMed  Google Scholar 

  • Werts C, Tapping RI, Mathison JC et al (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  CAS  PubMed  Google Scholar 

  • Wolbach SB, Binger CA (1914) Notes on a filterable Spirochete from fresh Water. Spirocheta biflexa (new species). J Med Res 30:23–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolgemuth CW, Charon NW, Goldstein SF et al (2006) The flagellar cytoskeleton of the spirochetes. J Mol Microbiol Biotechnol 11:221–227

    Article  CAS  PubMed  Google Scholar 

  • Wuthiekanun V, Chierakul W, Limmathurotsakul D et al (2007) Optimization of culture of Leptospira from humans with leptospirosis. J Clin Microbiol 45:1363–1365

    Article  PubMed Central  PubMed  Google Scholar 

  • Xue F, Dong H, Wu J et al (2010) Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 4:e857

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoshii Z (1978) Studies on the spatial direction of the Leptospira cell body. Proc Jap Acad Series B 54(B):200–205

    Google Scholar 

  • Zhang Q, Zhang Y, Zhong Y et al (2011) Leptospira interrogans encodes an ROK family glucokinase involved in a cryptic glucose utilization pathway. Acta Biochim Biophys Sin (Shanghai) 43:618–629

    Article  CAS  Google Scholar 

  • Zhong Y, Chang X, Cao XJ et al (2011) Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 21:1210–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuerner RL (2005) Laboratory maintenance of pathogenic Leptospira. Current protocol microbiology chapter 12, unit 12E.1

    Google Scholar 

Download references

Acknowledgments

The author thanks Rebecca Hof and Dr. Timothy Witchell for critical reading of the chapter and for assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cameron, C.E. (2015). Leptospiral Structure, Physiology, and Metabolism. In: Adler, B. (eds) Leptospira and Leptospirosis. Current Topics in Microbiology and Immunology, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45059-8_3

Download citation

Publish with us

Policies and ethics