Skip to main content

Mars Astrobiology: Recent Status and Progress

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

In this chapter, we begin making a brief review on the history of the studies of planet Mars. Then, we review the modern research (with recent status, data, results, and progress) on the search for possible extinct or extant life on Mars, with special emphasis on the search for the presence (in the past and/or presently) of liquid water within Mars’ surface and subsurface – a prerequisite for the evolution from geochemical state to biogeochemical state, as we are aware of here on planet Earth. Through the chapter, I present some proposals of mine about the astrobiology of Mars. We also analyze recent astrobiological experiments on board the International Space Station (ISS) for the future exploration of Mars. And we make a brief review on the evolution of equipment for its exploration and of future manned presence on the beautiful planet Mars – the “Red Planet.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso D, Bartumeus F, Catalan J (2002) Mutual interference between predators may give raise to Turing spatial patterns. Ecology 83(1):28–34

    Article  Google Scholar 

  • Baqué M, de Vera J-P, Rettberg P, Billi D (2013) The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut 91:180–186

    Article  Google Scholar 

  • Baurmann M, Gross T, Feudel U (2003) Instabilities and pattern formation in simple ecosystem models. Berichte – Forschungszentrum Terramare 12:22–28

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20

    Article  Google Scholar 

  • Benz J, Hoch R, Gabele T (1997) Documentation of mathematical models in ecology – an unpopular task ? Ecol Model 97:1–7

    Article  Google Scholar 

  • Bianciardi G, Miller JD, Straat PA, Levin GV (2012) Complexity analysis of the viking labeled release experiments. Int J Aeronaut Space Sci 13(1):14–26

    Google Scholar 

  • Bibring J, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, OMEGA Team (2004) Perennial water ice identified in the South Polar Cap of Mars. Nature 428:627–630

    Article  Google Scholar 

  • Carr MH (1996) Water on Mars. Oxford University Press, New York, p 197

    Google Scholar 

  • Castets V, Dulos E, Boissonade J, De Kepper P (1990) Experimental evidence of a sustained standing Turing-type non-equilibrium chemical pattern. Phys Rev Lett 64:2953

    Article  Google Scholar 

  • Chambers P (1999) Life on Mars: the complete story. Blandford Ed, London

    Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  Google Scholar 

  • Christensen PR (2006) Water at the poles and in permafrost regions of Mars. GeoSci World Elem 2(3):151–155

    Google Scholar 

  • Coyne LM, Pollack G, Kloepping R (1984) Room-temperature luminescence from kaolin induced by organic molecules. Clays Clay Miner 32(1):58–66

    Article  Google Scholar 

  • Coyne LM, Lahav N, Lawless JG (1985) Characterization of dehydration–induced luminescence of kaolinite. Clays Clay Miner 33(3):207–213

    Article  Google Scholar 

  • de Morais A (2004) Use of gravity simulator in the international space station for Mars terraformation. In: El-Genk MS, Bragg MJ (eds) Space Technology and Applications International Forum – STAIF 2004: conference on thermophysics in microgravity; commercial/civil next generation space transportation; 21st symposium on space nuclear power and propulsion; human space exploration; space colonization; new frontiers and future concepts, American Institute of Physics conference proceedings, Springer-Verlag, New York, vol 699, pp 961–966

    Google Scholar 

  • de Vera J-P, Schulze-Makuch D, Khan A, Lorek A, Koncz A, Möhlmann D, Spohn T (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 98:182–190

    Article  Google Scholar 

  • DeAngelis DL (1992) Dynamics of nutrient cycling and food webs. Chapman & Hall, New York

    Book  Google Scholar 

  • Dehant V, Lammer H, Kulikov YN, Grießmeier J-W, Breuer D, Verhoeven O, Karatekin O, Van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. In: Geology and habitability of terrestrial planets, vol 24, Space sciences series of the International Space Science Institute (ISSI). International Space Science Institute, Bern, pp 279–300

    Chapter  Google Scholar 

  • Feldman WC, Prettyman TH, Maurice S, Plaut JJ, Bish DH, Vaniman DT, Mellon MT, Metzger AE, Squyres SW, Karunatillake S, Boynton WV, Elphic RC, Funsten HO, Lawrence DJ, Tokar RL (2004) Global distribution of near-surface hydrogen on Mars. J Geophys Res Planets 109(E9):253

    Google Scholar 

  • Frachebourg L, Krapivsky PL, Ben-Naim E (1996) Spatial organization in cyclic Lotka-Volterra systems. Phys Rev E 54:6186

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  Google Scholar 

  • Gaidos E, Selsis F (2007) From protoplanets to protolife: the emergence and maintenance of life. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 929–944

    Google Scholar 

  • Grotzinger JP (2014) Introduction to special issue – habitability, taphonomy, and the search for organic carbon on Mars. Science 343(6169):386–387

    Article  Google Scholar 

  • Grotzinger JP, MSL Science Team (2014) A Habitable Fluvio-Lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343:6169

    Google Scholar 

  • Hassler DM, MSL Science Team (2014) Mars’ surface radiation environment measured with the Mars science laboratory’s curiosity rover. Science 343:6169

    Article  Google Scholar 

  • Head JW III, Hiesinger H, Ivanov MA, Kreslavsky M, Pratt S et al (1999) Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286:2134–2137

    Article  Google Scholar 

  • Hecht MH (2002) Metastability of liquid water on Mars. Icarus 156:373–386

    Article  Google Scholar 

  • Hunter KS, Wang Y, Van Capellen P (1998) Kinetic modelling of microbially–driven redox chemistry subsurface environments: coupling transport, microbial metabolism and geochemistry. J Hydrol 209:53–80

    Article  Google Scholar 

  • Jackson JD (1999) Classical electrodynamics. Wiley, New York, p 128

    Google Scholar 

  • Kim SS, Mysoor N, Ulmer C (2009) Miniature NMR Spectrometers Without Magnets. NASA Tech Briefs

    Google Scholar 

  • Köhler P, Wirtz KW (2002) Linear understanding of a huge aquatic ecosystem model using a group-collecting sensitivity analysis. Environ Model Software 17(7):613–625

    Article  Google Scholar 

  • Kropp J, Klenke T (1997) Phenomenological pattern recognition in the dynamical structures of tidal sediments from the German Wadden Sea. Ecol Model 103(2–3):151–170

    Article  Google Scholar 

  • Kropp J, Block A, von Bloh W, Klenke T, Schellnhuber HJ (1997) Multifractal characterization of microbially induced magnesian calcite formation in recent tidal flat sediments. Sediment Geol 109:37–51

    Article  Google Scholar 

  • Leinz V, Amaral SE (2003) Geologia Geral, 14th edn. Companhia Editora Nacional, São Paulo, pp 55–73

    Google Scholar 

  • Leshin LA, Science Team MSL (2013) Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity Rover. Science 341:6153

    Article  Google Scholar 

  • Libes SM (1992) An introduction to marine biogeochemistry. Wiley, New York, pp 288–327

    Google Scholar 

  • Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci U S A 6(7):410–415

    Article  Google Scholar 

  • Marinova MM, McKay CP, Hashimoto H (2000) Warming Mars using artificial super-greenhouse gases. J Br Interplanet Soc 53:235–240

    Google Scholar 

  • Martin A, Yeats S, Janekovic D, Reiter WD, Aicher W, Zillig W (1984) SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3(9):2165–2168

    Google Scholar 

  • McCauley E, Murdoch WW (1990) Predator–prey dynamics in environments rich and poor in nutrients. Nature 343:455–457

    Article  Google Scholar 

  • McKay CP (1993) Relevance of Antarctic microbial ecosystems to exobiology. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 593–601

    Google Scholar 

  • McKay CP, Stoker CR (1989) The early environment and its evolution on Mars: implications for life. Rev Geophys 27(2):189–214

    Article  Google Scholar 

  • McKay CP, Friedmann EI, Wharton RA, Davis WL (1991a) History of water on Mars: a biological perspective. Adv Space Res 12(4):231–238

    Article  Google Scholar 

  • McKay CP, Toon OB, Kasting JF (1991b) Making Mars habitable. Nature 352:489–496

    Article  Google Scholar 

  • McKay CP, Williams KE, Toon OB, Head JW (2010) Do ice caves exist on Mars? Icarus 209(2):358–368

    Article  Google Scholar 

  • Meeβen J, Sánchez FJ, Brandt A, Balzer E-M, de la Torre R, Sancho LG, de Vera J-P, Ott S (2013) Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Origin Life Evol Biosph 43:283–303

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  • MEPAG Special Regions – Science Analysis Group, Beaty D, Buxbaum K, Meyer M, Barlow N, Boynton W, Clark B, Deming J et al (2006) Findings of the Mars special regions science analysis group. Astrobiology 6(5):677–732

    Article  Google Scholar 

  • Meslin PY, Gasnault O, Schröder S, Cousin A, Berger G, Clegg SM, Lause J, Maurice S, Sautter V, Madsen MB (2013) Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science 341:6153

    Article  Google Scholar 

  • Michalski JR, Cuadros J, Niles PB, Parnell J, Rogers AD, Wright SP (2013) Groundwater activity on Mars and implications for a deep biosphere. Nat Geosci 6:133–138

    Article  Google Scholar 

  • Mitrofanov IG, Zuber MT, Litvak ML, Boynton WV, Smith DE, Drake D, Hamara D, Kozyrev AS, Sanin AB, Shinohara C, Saunders RS (2003) CO2 snow depth and subsurface water-ice abundance in the Northern Hemisphere of Mars. Science 300:2081–2084

    Article  Google Scholar 

  • Mudryk ZJ, Podgórska B, Ameryk A, Bolałek J (2000) The occurrence and activity of sulphate–reducing bacteria in the bottom sediments of the Gulf of Gdańsk. Oceanologia 42(1):105–117

    Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Heidelberg

    Book  Google Scholar 

  • Ouyang Q, Swinney HL (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352:610–612

    Article  Google Scholar 

  • Oze C, Jones LC, Goldsmith JI, Rosenbauerd RJ (2012) Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces. Proc Natl Acad Sci U S A 109(25):9750–9754

    Article  Google Scholar 

  • Petrov AS, Bernier CR, Hsiao C, Norris AM, Kovacs NA, Waterbury CC, Stepanov VG, Harvey SC, Fox GE, Wartell RM, Hud NV, Williams LD (2014) Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci U S A 111(28):10251–10256

    Article  Google Scholar 

  • Plaxco KW, Gross M (2011) Astrobiology: a brief introduction, 2nd edn. Johns Hopkins University Press, Baltimore, pp 285–286

    Google Scholar 

  • Pollack JB (1987) The case for a wet, warm climate on early Mars. Icarus 71:203–224

    Article  Google Scholar 

  • Pritchard DW (1967) What is an Estuary: Physical Viewpoint. In: Lauf GH (ed) Estuaries, vol 83. American Association for the Advancement of Science, Washington, DC, pp 3–5

    Google Scholar 

  • Provata A, Tsekouras GA (2003) Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice Lotka–Volterra model. Phys Rev E 67:056602

    Article  Google Scholar 

  • Provata A, Nicilis G, Baras F (1999) Oscillatory dynamics in low-dimensional supports: a lattice Lotka–Volterra model. J Chem Phys 110:8361–8368

    Article  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1986) Biology of plants, 4th edn. Worth Publishers, New York

    Google Scholar 

  • Rummel JD (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc Natl Acad Sci U S A 98(5):2128–2131

    Article  Google Scholar 

  • Sagan CE (1980) Cosmos, 1st edn. Francisco Alves Editora, Rio de Janeiro, pp 195–216

    Google Scholar 

  • Saunders PT, Bazin MJ (1974) On the stability of foodchains. J Theor Biol 52:121–142

    Article  Google Scholar 

  • Schopf WJ, Walter MR (1983) Archean microfossils: New evidence of ancient microbes. In: Schopf JW (ed) Earth’s earliest biosphere – it’s origin and evolution. Princeton University Press, Princeton, pp 214–239

    Google Scholar 

  • Schuerger AC, Golden DC, Ming DW (2012) Biotoxicity of Mars soils: dry deposition of analog soils on microbial colonies and survival under Martian conditions. Planet Space Sci 72(1):91–101

    Article  Google Scholar 

  • Schuerger AC, Ulrich R, Berry BJ, Nicholson WL (2013) Growth of Serratia liquefaciens under 7 mbar, 0 °C, and CO2–enriched anoxic atmospheres. Astrobiology 13(2):115–131

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycles 12:93–113

    Article  Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41(8):1651–1668

    Article  Google Scholar 

  • Stoker CR (1996) Science strategy for human exploration of Mars. In: Stoker CR, Emmart C (eds) Strategies for mars: a guide to human exploration, vol 86. American Astronautical Society, Univelt, Inc., San Diego, pp 536–560

    Google Scholar 

  • Stradioto MR, Kiang CH, Caetano-Chang MR (2008) Caracterização petrográfica easpectos diagenéticos dos arenitos do Grupo Bauru na região sudoeste do Estado de São Paulo. Geociências, Revista Escola de Minas, Ouro Preto 61(4):433–441

    Google Scholar 

  • Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY (2011) Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11(2):157–181

    Article  Google Scholar 

  • Tainaka KI (1989) Stationary pattern of vortices or strings in biological systems: lattice version of the Lotka–Volterra model. Phys Rev Lett 63:2688–2691

    Article  Google Scholar 

  • Teixeira W, Toledo MCM, Taioli F, Fairchild TR (2008) Decifrando a Terra, 3rd edn. Companhia Editora Nacional, São Paulo, pp 285–304

    Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, McKay DS, Gibson EK, Wentworth SJ (2009) Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochim Cosmochim Acta 73(21):6631–6677

    Article  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann-Gibbs entropy. J Stat Phys 52:479

    Article  Google Scholar 

  • Tsallis C, Gell-Mann M (eds) (2004) Nonextensive entropy-interdisciplinary applications. Oxford University Press, New York

    Google Scholar 

  • Tsallis C, Mendes RS, Plastino AR (1998) The role of constraints within generalized nonextensive statistics. Phys A 261(3):534–554

    Article  Google Scholar 

  • Tsekouras GA, Provata A (2002) Fractal properties of the lattice Lotka-Volterra model. Phys Rev E 65(016204):016201–016208

    Google Scholar 

  • Tsekouras GA, Provata A, Tsallis C (2004) Nonextensivity of the cyclic lattice Lotka-Volterra model. Phys Rev E 69(016120):161201–161207

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72

    Article  Google Scholar 

  • Van Capellen P, Chang Y (1996) Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am J Sci 296(3):197–243

    Article  Google Scholar 

  • (Various) (2014) Special issue – curiosity rover on Mars – exploring Martian habitability. Science 343:6169

    Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Volterra V (1936) Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Gauthier-Villars, Paris

    Google Scholar 

  • Vopel KC, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51(4):1801–1812

    Article  Google Scholar 

  • Walter MR (1983) Archaean stromatolites: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere – it’s origin and evolution. Princeton University Press, Princeton, pp 187–213

    Google Scholar 

  • Wang Y, Van Capellen P (1996) A multicomponent reactive transport model for early diagenesis: application to redox cycling in coastal marine sediments. Geochim Cosmochim Acta 60:2993–3014

    Article  Google Scholar 

  • Westall F, Loizeau D, Foucher F, Bost N, Betrand M, Vago J, Kminek G (2013) Habitability on Mars from a microbial point of view. Astrobiology 13(9):887–897

    Article  Google Scholar 

  • Wirtz KW (2003) Control of biogeochemical cycling by mobility and metabolic strategies of microbes in the sediments: an integrated model study. Fed Eur Microbiol Soc (FEMS) Microbiol Ecol 46:295–306

    Google Scholar 

  • Yang L, Zhabotinsky AM, Epstein IR (2004) Stable squares and other oscillatory Turing patterns in a reaction-diffusion model. Phys Rev Lett 92:198303

    Article  Google Scholar 

  • Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212(2):493–503

    Article  Google Scholar 

  • Zillig W, Schleper C, Kubo K (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci U S A Microbiol 84(16):7645–7649

    Google Scholar 

  • Zillig W, Stedman KM, Schleper C, Rumpf E (1999) Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genet Soc Am Genet 152:1397–1405

    Google Scholar 

Download references

Acknowledgments

I would like to acknowledge the most valuable comments, good advices for my international efforts, and sincere friendships by Dr. Adriana Ocampo, NASA Headquarters, and by Dr. Pascale Ehrenfreund (George Washington University), Dr. José Helayël-Neto (CBPF), Dr. Sebastião Dias (CBPF), Dr. Álvaro Nogueira (CBPF), Dr. João dos Anjos (ON), Dr. Joseph Boardman (Analytical Imaging and Geophysics, LLC.), Dr. Christopher McKay, Dr. Carol Stoker, Dr. Nathalie Cabrol, Dr. Heather Smith, Dr. Geoffrey Briggs (retired), and Dr. Scott Hubbard (Stanford University), NASA–Ames Research Center, since my studies and work at NASA–Ames in July 1999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio de Morais M. Teles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Morais M. Teles, A. (2015). Mars Astrobiology: Recent Status and Progress. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_8

Download citation

Publish with us

Policies and ethics