Skip to main content

Automatic Recognition of Impact Craters on the Martian Surface from DEM and Images

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Impact craters are the most outstanding and attractive geomorphological features on the surface of the planets, showing variety and complexity of the surface morphology. The accurate recognition of impact craters on Mars is very useful to analyze and understand the relative dating of Martian surface. In this chapter, four crater-detection methods have been presented and discussed with various extent of discrimination ability on Martian images or topography data. The modified ad boosting approach demonstrates the best performance in classification of craters, while the algorithms based on topography data have low efficiency in automatic detection. Comparing to previous solutions, the modified ad boosting method has greatly improved the detecting performance of the algorithm and reduced detection time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bandeira L, Saraiva J, Pina P (2007) Impact crater recognition on Mars based on a probability volume created by template matching. IEEE Trans Geosci Remote Sens 45(12):4008–4015. doi:10.1109/TGRS.2007.904948

    Article  Google Scholar 

  • Bandeira L, Ding W, Stepinski TF (2010) Automatic detection of sub-km craters using shape and texture information. Lunar and Planetary Science XLI (CD-ROM), Abs. 1144

    Google Scholar 

  • Barata T, Alves EI, Saraiva J, Pina P (2004) Automatic recognition of impact craters on the surface of Mars. In: Campilho A, Kamel M (eds.) Image analysis and recognition. Lecture notes in computer science, vol 3212. Springer, New York, pp 489–496

    Google Scholar 

  • Barlow NG (1988) Crater size-frequency distributions and a revised Martian relative chronology. Icarus 75(2):285–305

    Article  Google Scholar 

  • Barlow NG, Barnes CW, Barnouin-Jha OS, Boyce JM, Chapman CR, Costard FM, Craddock RA, Garvin JB, Greeley R, Hare TM, Kuzmin RO, Mouginis-Mark PJ, Newsom HE, Sakimoto SEH, Stewart ST, Soderblom LA (2003) Utilizing GIS in Martian impact crater studies. In: Proceedings of the ISPRS WG IV/9 extraterrestrial mapping workshop: advances in planetary mapping (Abstract)

    Google Scholar 

  • Brumby S, Plesko C, Asphaug E (2003) Evolving automated feature extraction algorithms for planetary science. In: Proceedings of ISPRS WGIV/9: extraterrestrial mapping workshop—advances planetary mapping, Houston, TX

    Google Scholar 

  • Bue BD, Stepinski TF (2007) Machine detection of Martian impact craters from digital topography data. IEEE Trans Geosci Remote Sens 45(1):265–274

    Article  Google Scholar 

  • Cheng Y, Goguen J, Johnson A, Leger C, Matthies L, San Martin M, Willson R (2004) The Mars exploration Rovers descent image motion estimation system. IEEE Intell Syst 19(3):13–21

    Article  Google Scholar 

  • Crater Analysis Techniques Working Group (1979) Standard techniques for presentation and analysis of crater size-frequency data. Icarus 37:467–474

    Google Scholar 

  • Ding W, Stepinski T, Mu Y, Bandeira L, Vilalta R, Wu Y, Lu Z, Cao T, Wu X (2011) Sub-kilometer crater discovery with boosting and transfer learning. ACM Trans Intell Syst Technol 2(4):39

    Article  Google Scholar 

  • Johnson AR, Willson J, Goguen J, Alexander, Meller D (2005) Field testing of the Mars exploration rovers descent image motion estimation system. In: Proceedings of the IEEE international conference on Robotics and Automation, Barcelona, Spain, April 2005, pp 4463–4469

    Google Scholar 

  • Kim J, Muller JP, Van Gasselt S, Morley J, Neukum G (2005) Automated crater detection: a new tool for Mars cartography and chronology. Photogramm Eng Remote Sens 71(10):1205–1217

    Article  Google Scholar 

  • Leroy B, Medioni GG, Johnson E, Matthies L (2001) Crater detection for autonomous landing on asteroids. Image Vis Comput 19(11):787–792

    Article  Google Scholar 

  • Martins R, Pina P, Marques J, Silveira M (2009) Crater detection by a boosting approach. IEEE Geosci Remote Sens Lett 6:127–131

    Article  Google Scholar 

  • Michael G (2003) Coordinate registration by automated crater recognition. Planet Space Sci 51(9):563–568

    Article  Google Scholar 

  • Salamunićcar G, Lončarić S (2008) GT-57633 catalogue of Martian impact craters developed for evaluation of crater detection algorithms. Planet Space Sci 56(15):1992–2008. doi:10.1016/j.pss.2008.09.010

  • Salamunićcar G, Lončarić S (2012) Crater detection algorithms: a survey of the first decade of intensive research. In: Veress B, Szigethy J (eds) Horizons in earth science research, vol 8. Nova Science, New York, pp 93–123

    Google Scholar 

  • Salamunićcar G, Lončarić S, Pina P, Bandeira L, Saraiva J (2011) MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets. Planet Space Sci 59(1):111–131

    Article  Google Scholar 

  • Sawabe Y, Matsunaga T, Rokugawa S (2006) Automated detection and classification of lunar craters using multiple approaches. Adv Space Res 37(1):21–27

    Article  Google Scholar 

  • Smirnov AA (2002) Exploratory study of automated crater detection algorithm. Technical report, Boulder, Colorado, USA. http://www.cs.colorado.edu/~rossnd/fcdmf/CraterPaper.pdf

  • Stepinski TF, Mendenhall MP, Bue BD (2009) Machine cataloging of impact craters on Mars. Icarus 203(1):77–87. doi:10.1016/j.icarus.2009.04.026

    Article  Google Scholar 

  • Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  • Xie Y, Tang G, Yan S, Lin H (2013) Crater detection using the morphological characteristics of Chang’E-1 digital elevation models. IEEE Geosci Remote Sens Lett 10(4):885–889

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, T., Jin, S. (2015). Automatic Recognition of Impact Craters on the Martian Surface from DEM and Images. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_6

Download citation

Publish with us

Policies and ethics