Skip to main content

Quantitative Characterization of Lunar Mare Orientale Basalts Detected by Moon Mineralogical Mapper on Chandrayaan-1

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1283 Accesses

Abstract

Efficient lunar resource utilization requires accurate and quantitative evaluation of mineral and glass abundances, distribution, and extraction feasibility, especially for ilmenite (TiO2). The modal analyses have performed on lunar basaltic terrains using hyperspectral remote sensing data along with ground truth chemistry and mineralogy. The main aim of the present work is to characterize the lunar Mare Orientale basalts based on TiO2 content and quantify the lunar surface minerals, including clinopyroxene, orthopyroxene, plagioclase, and olivine. The Orientale basin is one of the youngest impact multi-ringed basins on the Moon covering 930 km in diameter centered at 20°S 95°W. The morphological features in the Orientale basin have developed interest among geoscientist to explore further study on this region. Based on the Apollo orbital, geochemical, and Earth-based spectral data, it is concluded that the Orientale ejecta are uniformly feldspathic in composition, almost pure anorthosite with no evidence of ultramafic components (Hawke, Geophys Res Lett 18(11):2141–2144, 1991). Greeley et al. (Geophys Res 98:17183–17205, 1993) have conferred the Orientale basin bearing the low-Ti basalts by using Galileo images. In this study, parts of basaltic regions of Mare Orientale, Lacus Veris, and Lacus Autumni of the Orientale basin are investigated using Moon Mineralogical Mapper (M3) data of onboard Chandrayaan-1 orbiter. Lucey’s (1998) TiO2 estimation method and spectral profiles and spectral unmixing techniques have been used to detect and map the minerals, including plagioclase, clinopyroxene, orthopyroxenes, olivine, and various basalts such as low-, medium-, and high-Ti basalts. The Orientale data were acquired by M3’s reduced resolution mode with 20–40 nm spectral resolution and 140 m/pixel across the 40 km field of view. The RELAB mineral spectra of plagioclase, clino/orthopyroxenes, olivine and various basaltic spectra, chemistry and mineralogy have been employed to unmixing analysis. Comparing the spectral profiles of the basaltic regions with the RELAB basaltic spectra, the distribution and nature of TiO2 basalts in the Orientale basaltic regions have been analyzed in quantitative manner in the present research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul S (2003) Subpixel classification of ground surface features. GIS Dev 7(11):20–24

    Google Scholar 

  • Adams JB (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J Geophys Res 79:4829–4836

    Article  Google Scholar 

  • Adams JB (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In: Karr C Jr (ed) Infrared spectroscopy of lunar and terrestrial minerals. Academic, New York, pp 91–116

    Chapter  Google Scholar 

  • Basaltic Volcanism Study Project (BVSP) (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, Oxford, p 1286 (Heiken GH, Vaniman DT, French BM (eds) (1991) Lunar sourcebook. Cambridge University Press, Cambridge, p 736)

    Google Scholar 

  • Boardman JW (1989) Spectral and spatial unmixing: applications of singular value decomposition. In: Proceedings of image processing, Reno, 1989

    Google Scholar 

  • Bokun Y, Shengweia L, Runsheng W, Xiaofanga G, Weidongb S (2008) Experiment study on quantitative retrieval of mineral abundances from reflectance spectra, remote sensing of the environment: 16th national symposium on remote sensing of China (eds) Qingxi Tong Proceedings of SPIE, vol 7123, p 712303. doi:10.1117/12.815549

  • Bokun Y, Runsheng W, Fuping G, Zhenchao W (2010) Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra unmixing method and Hapke model. ICARUS 208:11–19

    Article  Google Scholar 

  • Chambers JG, Taylor LA, Patchen A (1995) Quantitative mineralogical characterization of lunar high-TI mare basalts and soils for oxygen production. J Geophys Res 100(E7):14391–14401

    Article  Google Scholar 

  • Chen X, Warner T, Campagna D (2007) Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada [J]. Remote Sens Environ 110:344–356

    Article  Google Scholar 

  • Clark R, Swayze G, Livo R, et al (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems [J]. J Geophys Res 108(E2):5–1 to 5–44

    Google Scholar 

  • Clark RN et al (2008) Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus 193:372–386

    Article  Google Scholar 

  • Cloutis EA, Gaffey MJ (1991) Pyroxene spectroscopy revisited: spectral compositional correlations and relationships to geothermometry. J Geophys Res 96:22809–22826

    Article  Google Scholar 

  • Crown DA, Pieters CM (1987) Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra. ICARUS 72:492–506

    Article  Google Scholar 

  • Goswami JN, Annadurai M (2009) Chandrayaan-1: India’s first planetary science mission to the Moon. Curr Sci 96(4):486–491

    Google Scholar 

  • Greeley R (1976) Modes of emplacement of basalt terrains and an analysis of mare volcanism in the Orientale Basin. In: Proceedings of the 7th lunar science conference, Houston, TX, 15–19 March 1976, vol 3 (A77-34651 15-91). Pergamon Press, Inc., New York, pp 2747–2759

    Google Scholar 

  • Greeley R et al (1993) Galileo imaging observations of lunar maria and related deposits. J Geophys Res 98:17183–17205. doi:10.1029/93JE01000

    Article  Google Scholar 

  • Green RO, Pieters CM, Mouroulis P, Sellars G, Eastwood M, Geier S, Shea J (2007) The Moon Mineralogy Mapper: characteristics and early laboratory calibration results. Lunar Planet Sci [CD‐ROM] 38, Abstract 2354

    Google Scholar 

  • Hawke BR, Lucey PG, Taylor GJ, Bell JF, Peterson CA, Blewett DT, Horton K, Smith GA, Spudis PD (1991) Remote sensing studies of the Orientale region of the Moon: a pre-Galileo view. Geophys Res Lett 18(11):2141–2144

    Article  Google Scholar 

  • Head JW (1974) Orientale multi‐ringed basin interior and implications for the petrogenesis of lunar highland samples. Moon 11:327–356. doi:10.1007/BF00589168

    Article  Google Scholar 

  • Head JW (1976) Lunar volcanism in space and time. Rev Geophys 14(4):265–300. doi:10.1029/RG014i002p00265

    Article  Google Scholar 

  • Heiken GH, Vaniman DT (1990) Characterization of lunar ilmenite resources. In: Proceedings of the 20th lunar and planetary science conference, Houston, TX, 13–17 March 1989 (A90-33456 14-91). Lunar and Planetary Institute, Houston, pp 239–247

    Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G, Head J (2000) Ages of mare basalts on the lunar nearside. J Geophys Res 105(E12):29239–29275

    Article  Google Scholar 

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2003) Ages of lunar mare basalts in Mare Frigoris and other nearside maria, Lunar Planet Sci [CD‐ROM], 34, Abstract 1257

    Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Jaumann R, Neukum G (2011) Ages and stratigraphy of lunar mare basalts: a synthesis. In: Ambrose WA, Williams DA (eds) Recent advances and current research issues in lunar stratigraphy, Special paper, vol 447. Geological Society of America, pp 1–51. doi:10.1130/2011.2477(01)

  • Hunt GR, Salisbury JW (1970) Visible and near infrared spectra of minerals and rocks. I. Silicate minerals. Mod Geol 1:283–300

    Google Scholar 

  • Hunt GR, Salisbury JW (1971) Visible and near infrared spectra of minerals and rocks. II. Carbonates. Mod Geol 2:23–30

    Google Scholar 

  • Isaacson PJ, Pieters CM, Besse S, Clark RN, Head JW, Klima RL, Mustard JF, Petro NE, Staid MI, Sunshine JM, Taylor LA, Thaisen KG, Tompkins S (2011) Remote compositional analysis of lunar olivine‐rich lithologies with Moon Mineralogy Mapper (M3) spectra. J Geophys Res 116:E00G1. doi:10.1029/2010JE003731

    Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105:4197–4216

    Article  Google Scholar 

  • Kadel SD (1993) Multispectral and morphologic analyses of lunar mare basalts in the Orientale Basin, M.Sc., Arizona State University, Phoenix

    Google Scholar 

  • Kadel SD, Greeley R, Neukum G, Wagner R (1993) The history of mare volcanism in the Orientale Basin; mare deposit ages, compositions and morphologies, Lunar Planet Sci [CD ROM], 24, Abstract 1374

    Google Scholar 

  • Kanniah KD, Ng Su Wai, Alvin Lau Meng Shin, Abd Wahid Rasib (2001) Linear mixture modelling applied to IKONOS data for mangrove mapping. http://www.a-a-r-s.org/acrs/proceeding/ACRS2005/Papers/FRR2-2.pdf

  • LeMouélic SL, Langevin Y (2001) The olivine at the lunar crater Copernicus as seen by Clementine NIR data. Planet Space Sci 49:65–70

    Article  Google Scholar 

  • LeMouélic SL, Langevin Y, Erard S (1999) The distribution of olivine in the crater Aristarchus inferred from Clementine NIR data. Geophys Res Lett 26:1195–1198

    Article  Google Scholar 

  • Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J Geophys Res 103(E2):3679–3699

    Article  Google Scholar 

  • Lucey PG et al (2006) Understanding the lunar surface and space – Moon interactions. Rev Miner Geochem 60:83–219. doi:10.2138/rmg.2006.60.2

    Article  Google Scholar 

  • McCord TB, Charette MP, Johnson TV, Lebofsky LA, Pieters C, Adams JB (1972) Lunar spectral types. J Geophys Res 77:1349–1359

    Article  Google Scholar 

  • McCord TB, Pieters CM, Feierberg MA (1976) Multispectral mapping of the lunar surface using ground based telescopes. Icarus 29:1–34

    Article  Google Scholar 

  • McCord TB, Clark RN, Hawke BR, Mcfadden LA, Owensby PD, Pieters CM, Adams JB (1981) Moon: near-infrared spectral reflectance, a first good look. J Geophys Res 86(B11):10883–10892

    Article  Google Scholar 

  • Papike JJ, Hodges FN, Bence AE, Cameron M, Rhodes JM (1976) Mare Basalts’ crystal chemistry, mineralogy, and petrology. Rev Geophys 14(4):475–540

    Article  Google Scholar 

  • Papike JJ, Ryder G, Schearer CK (1998) Lunar samples. In: Papike JJ (ed) Planetary materials. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Pieters CM (1977) Characterization of lunar mare basalt types-II: spectral classification of fresh mare craters. In: Proceedings of the 8th lunar science conference, Houston, TX, 14–18 March 1977, vol 1 (A78-41551 18-91). Pergamon Press, Inc., New York, pp 1037–1048

    Google Scholar 

  • Pieters CM (1978) Mare basalt types on the front side of the Moon: a summary of spectral reflectance data. In: Proceedings of the ninth lunar and planetary science conference, pp 2825–2849

    Google Scholar 

  • Pieters CM, Englert PA (eds) (1997) Remote geochemical analysis: Elemental and mineralogical composition. Cambridge University Press, New York, p 467

    Google Scholar 

  • Pieters CM, Head JW, Sunshine JM, Fischer EM, Murchie SL, Belton M, McEven A, Gaddis L, Greeley R, Neukum G, Jaumann R, Hoffmann H (1993) Crustal diversity of the Moon: compositional analyses of Galileo solid state imaging data. J Geophys Res 98:17127–17148. doi:10.1029/93JE01221

    Article  Google Scholar 

  • Pieters CM, Mustard JF, Sunshine JM (1996) Quantitative mineral analyses of planetary surfaces using reflectance spectroscopy. Spec Publ Geochem Soc 5:307–325

    Google Scholar 

  • Pieters CM, Head JW, Gaddis L, Duke M (2001) Rock types of South Pole-Aitken Basin and extent of basaltic volcanism. J Geophys Res 106(E11):28001–28022

    Article  Google Scholar 

  • Pieters CM, Klima RL, Hiroi T, Dyar MD, Lane MD, Treiman AH, Noble SK, Sunshine JM, Bishop JL (2008) Martian dunite NWA 2737: integrated spectroscopic analyses of brown olivine. J Geophys Res 113(1–12):E06004

    Google Scholar 

  • Pieters CM, Boardman J, Buratti B, Chatterjee A, Clark R, Glavich T, Green R, Head J, Isaacson P, Malaret E, McCord T, Mustard J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L, Tompkins S, Varanasi P, White M (2009) The Moon Mineralogy Mapper (M3) on Chandrayaan-1, Indian Academy of Sciences. Curr Sci 96(4):500–505

    Google Scholar 

  • Scott DH, McCauley JF, West MN (1977) Geologic map of the west side of the moon, Miscellaneous investigations series map I-1034. U.S. Geological Survey, Reston

    Google Scholar 

  • Shkuratov Y, Opanasenko N, Zubko E, Grynko Y, Korokhin V, Pieters C, Videen G, Mall U, Opanasenko A (2007) Multispectral polarimetry as a tool to investigate texture and chemistry of lunar regolith particles. Icarus 187:406–416

    Article  Google Scholar 

  • Solomon SC, Head JW (1980) Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev Geophys Space Phys 18:107–141. doi:10.1029/RG018i001p00107

    Article  Google Scholar 

  • Spudis PD, Hawke BR, Lucey P (1984) Composition of Orientale Basin deposits and implications for the lunar basin‐forming process. In: Proceedings of the 15th lunar planetary science conference, Part 1, J Geophys Res 89(Suppl):C197–C210

    Google Scholar 

  • Staid MI (2000) Remote determination of the mineralogy and optical alteration of lunar basalts using clementine multispectral images; global comparisons of mare volcanism. Ph.D. thesis, Brown University, Providence, RI

    Google Scholar 

  • Staid MI, Pieters CM (2000) Integrated spectral analysis of mare soils and craters: applications to eastern nearside basalts. Icarus 145:122–139. doi:10.1006/icar.1999.6319

    Article  Google Scholar 

  • Staid MI, Pieters CM, Head JW (1996) Mare Tranquillitatis: Basalt emplacement history and relation to lunar samples. J Geophys Res 101:23213–23228. doi:10.1029/96JE02436

    Article  Google Scholar 

  • Staid MI et al (2011) The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan‐1. J Geophys Res. doi:10.1029/2010JE003735

    Google Scholar 

  • Taylor SR (1975) Lunar science: a post-Apollo view. Pergamon, New York, p 372

    Google Scholar 

  • Taylor LA, McKay DS (1992) An ilmenite feedstock on the moon; beneficiation of rocks versus soils In: Proceedings of the 23rd lunar and planetary science conference, League City, TX, 16–20 March 1992, Lunar and Planetary Institute, Houston, TX, pp 1411–1412

    Google Scholar 

  • Tompkins S, Mustard JF, Pieters CM, Forsyth DW (1997) Optimization of endmembers for spectral mixture analysis. Remote Sens Environ 59(3):472–489

    Article  Google Scholar 

  • Vaniman D, Dietrich J, Taylor GJ, Heiken G (1991) Exploration, samples, and recent concepts of the moon. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook: a user’s guide to the moon. Cambridge University Press/Lunar and Planetary Institute, New York

    Google Scholar 

  • Whitten J, Head JW, Staid M, Pieters CM, Mustard J, Clark R, Nettles J, Klima RL, Taylor L (2011) Lunar mare deposits associated with the Orientale impact basin: new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan‐1. J Geophys Res 116:E00G09. doi:10.1029/2010JE003736

    Google Scholar 

  • Yingst RA, Head JW (1997) Volumes of lunar lava ponds in South Pole–Aitken and Orientale basins: implications for eruption conditions, transport mechanisms and magma source regions. J Geophys Res 102:10909–10931. doi:10.1029/97JE00717

    Article  Google Scholar 

  • Yingst RA, Head JW (1999) Geology of mare deposits in South Pole–Aitken Basin as seen by Clementine UVVIS data. J Geophys Res 104:18957–18979. doi:10.1029/1999JE900016

    Article  Google Scholar 

Download references

Acknowledgement

The author acknowledges PLANEX, Physical Research Laboratory (ISRO), Ahmedabad, and Council of Scientific and Industrial Research (CSIR), New Delhi, for Postdoctoral Research Fellowship. Moreover, the author thanks the anonymous reviewer’s critical review which helps to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arivazhagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arivazhagan, S. (2015). Quantitative Characterization of Lunar Mare Orientale Basalts Detected by Moon Mineralogical Mapper on Chandrayaan-1. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_2

Download citation

Publish with us

Policies and ethics