Skip to main content

Molecular Dynamic Simulation for Heat Capacity of MgSiO 3 Perovskite

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

  • 1390 Accesses

Abstract

The interaction potential plays an important role in molecular dynamics (MD) simulations of MgSiO 3 perovskite. A new set of potential parameters is developed by means of combining two fitting potential parameters of previous studies. The constant-pressure heating capacity of MgSiO 3 are simulated by using the new set of potential parameters. It is shown that the heating capacity of MgSiO 3 perovskite are close to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oganov, A.R., Brodholt, J.P., Price, G.D.: Ab Initio Elasticity and Thermal Equation of State of MgSiO3 Perovskite. Earth Planet. Sci. Lett. 184, 555–560 (2001)

    Article  Google Scholar 

  2. Fiquet, G., Dewaele, A., Andrault, D., Kunz, M.: Thermoelastic Properties and Crystal Structure of MgSiO3 Perovskite at Lower Mantle Pressure and Temperature Conditions. Geophys. Res. Lett. 27, 21–24 (2000)

    Article  Google Scholar 

  3. Shim, S.H., Duffy, T.S., Shen, G.Y.: Stability and Structure of MgSiO3 Perovskite to 2300-Kilometer Depth in Earth’s Mantle. Science 293, 2437–2440 (2001)

    Article  Google Scholar 

  4. Liu, Z.J., Cheng, X.L., Yang, X.D., Zhang, H., Cai, L.C.: Molecular Dynamics of MgSiO3 Perovskite Melting. Chin. Phys. 15, 224–228 (2006)

    Article  Google Scholar 

  5. Liu, Z.J., Sun, X.W., Yang, X.D., Cheng, X.L., Guo, Y.D.: Simulation of Melting Behavior of The MgSiO3 Perovskite under Lower Mantle Conditions. Chin. J. Chem. Phys. 19, 311–314 (2006)

    Article  Google Scholar 

  6. Gu, T.K., Qi, Y.H., Qin, Y.J.: Molecular Dynamics Simulations of Solidification of Liquid NiAl. Chin. J. Chem. Phys. 16, 385–389 (2003)

    Google Scholar 

  7. Liu, Z.J., Cheng, X.L., Chen, X.R., Zhang, F.P.: Molecular Dynamics Simulations for Melting Temperatures of CaF2. Chin. J. Chem. Phys. 18, 193–196 (2005)

    Google Scholar 

  8. Liu, Z.J., Cheng, X.L., Zhang, F.P.: Simulated Equations of State of MgSiO3 Perovskite. Chin. J. Chem. Phys. 19, 65–68 (2006)

    Article  Google Scholar 

  9. Hoover, W.G.: Canonical Dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 31, 1695–1697 (1985)

    Article  Google Scholar 

  10. Catlow, C.R.A.: Mott–Littleton Calculations in Solid-State Chemistry and Physics. J. Chem. Soc. Faraday Trans. 85(2), 335–340 (1989)

    Article  Google Scholar 

  11. Belonoshko, A.B.: Molecular Dynamics of MgSiO3 Perovskite at High Pressures: Equation of state, Structure, and Melting Transition. Geochim. Cosmochim. Atca. 58, 4039–4047 (1994)

    Article  Google Scholar 

  12. Belonoshko, A.B., Dubrovinski, L.S.: Molecular Dynamics of NaCl (B1 and B2) and MgO (B1) Melting; Two-Phase Simulation. Am. Mineral. 81, 303–316 (1996)

    Google Scholar 

  13. Kuklju, M.M.: Defects in Yttrium Aluminium Perovskite and Garnet Crystals: Atomistic Study. J. Phys.: Condens. Matter 12, 2953–2967 (2000)

    Google Scholar 

  14. Kramer, G.J., Farragher, N.P., van Beest, B.W.H.: Interatomic Force Fields for Silicas, Aluminophosphates, and Zeolites: Derivation based Onab Initio Calculations. Phys. Rev. B. 43, 5068–5080 (1991)

    Article  Google Scholar 

  15. Lewis, G.V., Catlow, C.R.A.: Potential Model for Ionic Oxides. J. Phys. C: Solid State Phys. 18, 1149–1161 (1985)

    Article  Google Scholar 

  16. Pandey, R., Gale, J.D., Sampth, S.K., Recio, J.M.: Atomistic Simulation Study of Spinel Oxides: Zinc Aluminate and Zinc Gallate. J. Am. Ceram. Soc. 82, 3337–3341 (1999)

    Article  Google Scholar 

  17. Bush, T.S., Gale, J.D., Catlow, C.R.A., Battle, P.D.: Self-Consistent Interatomic Potentials for The Simulation of Binary and Ternary Oxides. J. Mater. Chem. 4, 831–837 (1994)

    Article  Google Scholar 

  18. Akaogi, M., Ito, E.: Heat Capacity of MgSiO3 Perovskite. Geophys. Res. Lett. 20, 105–108 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Q. (2014). Molecular Dynamic Simulation for Heat Capacity of MgSiO 3 Perovskite. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics