Skip to main content

Glycoconjugate Vaccines

  • Chapter
  • First Online:
Book cover Vaccine Analysis: Strategies, Principles, and Control

Abstract

Antibodies against the cell surface carbohydrates of many microbial pathogens protect against infection, which led to the first generation of carbohydrate vaccines based on purified bacterial polysaccharides. These polysaccharide vaccines are rapidly becoming replaced by the more immunogenic glycoconjugate vaccines in which the cell surface carbohydrate is covalently attached to an appropriate carrier protein. Compared to the corresponding polysaccharide vaccines, glycoconjugate vaccines are diverse and structurally complex, which comprise polysaccharide or oligosaccharide fragments, linked through a variety of coupling chemistries to different carrier proteins. As for polysaccharide vaccines, the potency of glycoconjugate vaccines cannot be reliably predicted by biological assays, and therefore their development, quality control, and licensure rely mostly on the physicochemical characterization of the starting polysaccharide and protein, activated or derivatized intermediates and the conjugate vaccine produced. Glycoconjugate vaccines against Haemophilus influenzae type b and selected serogroups/types of Neisseria meningitidis and Streptococcus pneumoniae have been licensed and strategies for their manufacturing, testing, and regulation established. These principles are being applied to develop conjugate vaccines against additional strains of these bacteria and other pathogens including Streptococcus, Salmonella, Staphylococcus, Escherichia coli, Klebsiella, Enterococcus, Shigella, Vibrio, as well as pathogenic fungi such as Candida albicans and Cryptococcus neoformans. These challenges are being met by the development of new conjugation strategies combined with improved analytical techniques and new approaches to making well-defined conjugates using synthetic and biosynthetic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhameed AS, Morris GA, Adams GG, Rowe AJ, Laloux O, Cerny L, Bonnier B, Duvivier P, Conrath K, Lenfant C, Harding SE (2012) An asymmetric and slightly dimerized structure for the tetanus toxoid protein used in glycoconjugate vaccines. Carbohydr Polym 90(4):1831–1835

    CAS  PubMed  Google Scholar 

  • Abeygunawardana C, Williams TC, Sumner JS, Hennessey JP Jr (2000) Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal Biochem 279:226–240

    CAS  PubMed  Google Scholar 

  • Adam O, Moreau M (2000) Improved methods for the quantification of free and linked spacer in conjugate vaccine process. Dev Biol (Basel) 103:105–111

    CAS  Google Scholar 

  • Adamo R, Romano MR, Berti F, Leuzzi R, Tontini M, Danieli E, Cappelletti E, Caciki OS, Swennen E, Pinto V, Brogioni B, Proietti D, Galeotti CL, Lay L, Monteiro MA, Scarselli M, Costantino P (2012) Phosphorylation of the synthetic hexasaccharide repeating unit is essential for the induction of antibodies to Clostridium difficile PSII cell wall polysaccharide. ACS Chem Biol 7:1420–1428. doi:10.1021/cb300221f

    CAS  PubMed  Google Scholar 

  • Ahman H, Käyhty H, Tamminen P, Vuorela A, Malinoski F, Eskola J (1996) Pentavalent pneumococcal oligosaccharide conjugate vaccine PncCRM is well-tolerated and able to induce an antibody response in infants. Pediatr Infect Dis J 15:134–139

    CAS  PubMed  Google Scholar 

  • Alexander HE, Heidelberger M, Leidy G (1944) The protective or curative element in type b H. influenzae rabbit antiserum. Yale J Biol Med 16:425–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander HE, Leidy G (1947) The present status of treatment for influenzal meningitis. Am J Med 2(5):457–466

    CAS  PubMed  Google Scholar 

  • Anderson PW, Pichichero ME, Insel RA, Betts R, Eby R, Smith DH (1986) Vaccines consisting of periodate-cleaved oligosaccharides from the capsule of Haemophilus influenzae type b coupled to a protein carrier: structural and temporal requirements for priming in the human infant. J Immunol 137(4):1181–1186

    CAS  PubMed  Google Scholar 

  • Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, Jansen KU (2012) Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 8(11):1585–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anonymous (2000) Recommendations for the production and control of Haemophilus influenzae type b conjugate vaccines. WHO Tech Rep Series 897:27–56

    Google Scholar 

  • Anonymous (2004) Recommendations for the production and control of meningococcal group C conjugate vaccines. WHO Tech Rep Series 924:102–128

    Google Scholar 

  • Anonymous (2005) Recommendations for the production and control of pneumococcal conjugate vaccines. WHO Tech Rep Series 927:64–98

    Google Scholar 

  • Anonymous (2006) Recommendations to assure the quality, safety and efficacy of group A meningococcal conjugate vaccines. WHO Tech Rep Series 962:117–171

    Google Scholar 

  • Anonymous (2008) European pharmacopoeia monograph for Haemophilus type b conjugate vaccine. 01/2008:1219

    Google Scholar 

  • Anonymous (2009) Recommendations to assure the quality, safety and efficacy of pneumococcal conjugate vaccines. World Health Organization. http://www.who.int/biologicals/areas/vaccines/pneumo/Pneumo_final_23APRIL_2010.pdf. Accessed 13 June 2013

  • Anonymous (2013a) General chapter <1234> vaccines for human use—polysaccharide and glycoconjugate vaccines, U.S. Pharmacopeia and the National Formulary (USP–NF)

    Google Scholar 

  • Anonymous (2013b) European pharmacopoeia monograph for pneumococcal polysaccharide conjugate vaccines (adsorbed) 01/2013:2150

    Google Scholar 

  • Anonymous (2013c) Recommendations to assure the quality, safety and efficacy of typhoid conjugate vaccines. World Health Organization. http://www.who.int/biologicals/areas/vaccines/TYPHOID_BS2215_doc_v1.14_WEB_VERSION.pdf Accessed 14 July 2014

  • Anosova NG, Brown AM, Li L, Liu N, Cole LE, Zhang J, Mehta H, Kleanthous H (2013) Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J Med Microbiol 62:1394–1404

    CAS  PubMed  Google Scholar 

  • Arora S, Huffnagle GB (2005) Immune regulation during allergic bronchopulmonary mycosis: lessons taught by two fungi. Immunol Res 33(1):53–68. doi:10.1385/IR:33:1:053

    CAS  PubMed  Google Scholar 

  • Ashwell G (1957) Colorimetric analysis of sugars. Method Enzymol 3:73–105

    Google Scholar 

  • Astronomo RD, Lee H-K, Scanlan CN, Pantophlet R, Huang CY, Wilson IA, Blixt O, Dwek RA, Wong CH, Burton DR (2008) A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol 82(13):6359–6368. doi:10.1128/JVI.00293-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Astronomo RD, Kaltgrad E, Udit AK, Wang SK, Doores KJ, Huang CY, Pantophlet R, Paulson JC, Wong CH, Finn MG, Burton DR (2010) Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 17(4):357–370. doi:10.1016/j.chembiol.2010.03.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aubin Y, Jones C, Freedberg DI (2010) Using NMR spectroscopy to obtain the higher order structure of biopharmaceutical products. BioPharm Int (Supplement):28–38

    Google Scholar 

  • Auzanneau FI, Borrelli S, Pinto BM (2013) Synthesis and immunological activity of an oligosaccharide-conjugate as a vaccine candidate against Group A Streptococcus. Bioorg Med Chem Lett 23(22):6038–6042

    CAS  PubMed  Google Scholar 

  • Baker CJ, Edwards MS (2003) Group B streptococcal conjugate vaccines. Arch Dis Child 88(5):375–378. doi:10.1136/adc.88.5.375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraldo K, Mori E, Bartoloni A, Petracca R, Giannozzi A, Norelli F, Rappuoli R, Grandi G, Del Giudice G (2004) N19 polyepitope as a carrier for enhanced immunogenicity and protective efficacy of meningococcal conjugate vaccines. Infect Immun 72:4884–4887. doi:10.1128/IAI.72.8.4884-4887.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bardotti A, Averani G, Berti F, Berti S, Carinci V, D’Ascenzi S, Fabbri B, Giannini A, Maganoli C, Proietti D, Norelli F, Rappuoli R, Ricci S, Costantino P (2008) Physicochemical characterization of glycoconjugate vaccines for prevention of meningococcal diseases. Vaccine 26(18):2284–2296

    CAS  PubMed  Google Scholar 

  • Bardotti A, Averani G, Berti F, Berti S, Galli C, Giannini S, Fabbri B, Proietti D, Ravenscroft N, Ricci S (2005) Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines against Neisseria meningitidis groups Y and W135. Vaccine 23(16):1887–1899

    CAS  PubMed  Google Scholar 

  • Bardotti A, Proietti D, Ricci S (2012) Analysis of saccharide vaccines without interference. US Patent 8,137,680, 20 March 2012

    Google Scholar 

  • Bardotti A, Ravenscroft N, D’Ascenzi S, Averani G (2000) Quantitative determination of saccharide in Haemophilus influenzae type b glycoconjugate vaccines by high-performance anion-exchange chromatography with pulsed amperometric detection. Vaccine 18:1982–1993

    CAS  PubMed  Google Scholar 

  • Bastos RC, De Carvalho JM, Da Silveira IAFB, do Couto Jacob S, Leandro KC (2010) Determination of hydrazine in a meningococcal C conjugate vaccine intermediary product. Vaccine 28(34):5648–5651

    Google Scholar 

  • Bednar B, Hennessey JP Jr (1993) Molecular size analysis of capsular polysaccharide preparations from Streptococcus pneumoniae. Carbohydr Res 243(1):115–130

    CAS  PubMed  Google Scholar 

  • Belfast M, Lu R, Capen R, Zhong J, Nguyen MA, Gimenez J, Sitrin R, Mancinelli R (2006) A practical approach to optimization and validation of a HPLC assay for analysis of polyribosyl-ribitol phosphate in complex combination vaccines. J Chromatogr B 832:208–215

    CAS  Google Scholar 

  • Berti F, Adamo R (2013) Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 8(8):1653–1663. doi:10.1021/cb400423g

    CAS  PubMed  Google Scholar 

  • Berti F, Romano MR, Micoli F, Pinto V, Cappelletti E, Gavini M, Proietti D, Pluschke G, MacLennan CA, Costantino P (2012) Relative stability of meningococcal serogroup A and X polysaccharides. Vaccine 30:6409–6415. doi:10.1016/j.vaccine.2012.08.021

    CAS  PubMed  Google Scholar 

  • Beuvery EC, Miedema F, van Delft R, Haverkamp J (1983a) Preparation and immunochemical characterization of meningococcal group C polysaccharide-tetanus toxoid conjugates as a new generation of vaccines. Infect Immun 40(1):39–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beuvery EC, Speijers GJ, Lutz BI, Freudenthal D, Kanhai V, Haagmans B, Derks HJ (1985) Analytical, toxicological and immunological consequences of the use of N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide as coupling reagent for the preparation of meningococcal group C polysaccharide-tetanus toxoid conjugate as vaccine for human use. Dev Biol Stand 63:117–128

    Google Scholar 

  • Beuvery EC, vd Kaaden A, Kanhai V, Leussink AB (1983b) Physicochemical and immunological characterization of meningococcal group A polysaccharide-tetanus toxoid conjugates prepared by two methods. Vaccine 1:31–36

    Google Scholar 

  • Black SB, Shinefield HR, Fireman B, Hiatt R, Polen M, Vittinghoff E (1991) Efficacy in infancy of oligosaccharide conjugate Haemophilus influenzae type b (HbOC) vaccine in a United States population of 61,080 children. Pediatr Infect Dis J 10:97–104

    CAS  PubMed  Google Scholar 

  • Bøjstrup M, Petersen BO, Beeren SR, Hindsgaul O, Meier S (2013) Fast and accurate quantitation of glucans in complex mixtures by optimized heteronuclear NMR spectroscopy. Anal Chem 85:8802–8808

    PubMed  Google Scholar 

  • Bolgiano B, Mawas F, Yost SE, Crane DT, Lemercinier X, Corbel MJ (2001) Effect of physico-chemical modification on the immunogenicity of Haemophilus influenzae type b oligosaccharide–CRM197 conjugate vaccines. Vaccine 19(23):3189–3200

    Google Scholar 

  • Bolgiano B, Mawas F, Burkin K, Crane DT, Saydam M, Rigsby P, Corbel MJ (2007) A retrospective study on the quality of Haemophilus influenzae type b vaccines used in the UK between 1996 and 2004. Hum Vaccines 3(5):176–182

    Google Scholar 

  • Bongat AFG, Saksena R, Adamo R, Fujimoto Y, Shiokawa Z, Peterson DC, Fukase K, Vann WF, Kovac P (2010) Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant. Glycoconj J 27:69–77. doi:10.1007/s10719-009-9259-4

    CAS  PubMed  Google Scholar 

  • Boutonnier A, Villeneuve S, Nato F, Dassyl B, Fournier JM (2001) Preparation, immunogenicity, and protective efficacy, in a murine model, of a conjugate vaccine composed of the polysaccharide moiety of the lipopolysaccharide of Vibrio cholerae O139 bound to tetanus toxoid. Infect Immun 69:3488–3493. doi:10.1128/IAI.69.5.34883493.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    CAS  PubMed  Google Scholar 

  • Brady C, Killeen K, Taylor W, Patkar A, Lees A (2012) Carrier protein outsourcing. BioProcess Int 10(10):50–55

    CAS  Google Scholar 

  • Bröker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R (2011) Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 39(4):195–204

    PubMed  Google Scholar 

  • Bromuro C, Romano M, Chiani P, Berti F, Tontini M, Proietti D, Mori E, Torosantucci A, Costantino P, Rappuoli R, Cassone A (2010) Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 28:2615–2623. doi:10.1016/j.vaccine.2010.01.012

    CAS  PubMed  Google Scholar 

  • Bromuro C, Torosantucci A, Chiani P, Conti S, Polonelli L, Cassone A (2002) Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated Candidiasis in recipients of a Candida albicans vaccine. Infect Immun 70:5462–5470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broughan J, Anderson R, Anderson AS (2011) Strategies for and advances in the development of Staphylococcus aureus prophylactic vaccines. Expert Rev Vaccines 10:695–708. doi:10.1586/erv.11.54

    CAS  PubMed  Google Scholar 

  • Brown F, Corbel M, Griffiths E (2000) Physico-chemical procedures for the characterization of vaccines. Karger, Basel, p 103 (Dev Biol (Basel))

    Google Scholar 

  • Bruggink C, Poorthuis BJ, Deelder AM, Wuhrer M (2012) Analysis of urinary oligosaccharides in lysosomal storage disorders by capillary high-performance anion-exchange chromatography–mass spectrometry. Anal Bioanal Chem 403(6):1671–1683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bundle DR (2011) New frontiers in the chemistry of glycoconjugate vaccines. In: Bagnoli F, Rappuoli R (eds) Vaccine design: innovative approaches and novel strategies. Academic Press, Norfolk

    Google Scholar 

  • Bundle DR, Jennings HJ, Kenny CP (1973) An improved procedure for the isolation of meningococcal, polysaccharide antigens, and the structural determination of the antigen from serogroup X. Carbohydr Res 26:268–270

    CAS  PubMed  Google Scholar 

  • Bundle DR, Jennings HJ, Kenny CP (1974a) Studies on the group-specific polysaccharide of Neisseria meningitidis serogroup X and an improved procedure for its isolation. J Biol Chem 249:4797–4801

    CAS  PubMed  Google Scholar 

  • Bundle DR, Smith IC, Jennings HJ (1974b) Determination of the structure and conformation of bacterial polysaccharides by carbon 13 nuclear magnetic resonance. Studies on the group-specific antigens of Neisseria meningitidis serogroups A and X. J Biol Chem 249:2275–2281

    CAS  PubMed  Google Scholar 

  • Bundle DR, Nycholat C, Costello C, Rennie R, Lipinski T (2012) Design of a Candida albicans disaccharide conjugate vaccine by reverse engineering a protective monoclonal antibody. ACS Chem Biol 7(10):1754–1763. doi:10.1021/cb300345e

    CAS  PubMed  Google Scholar 

  • Cai X, Lei QP, Lamb DH, Shannon A, Jacoby J, Kruk J, Kensinger RD, Ryall R, Zablackis E, Cash P (2004) LC/MS characterization of meningococcal depolymerized polysaccharide group C reducing endgroup and internal repeating unit. Anal Chem 76(24):7387–7390

    CAS  PubMed  Google Scholar 

  • Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300(5628):2065–2071. doi:10.1126/science.1083182

    CAS  PubMed  Google Scholar 

  • Calix JJ, Nahm MH, Zartler ER (2011) Elucidation of structural and antigenic properties of pneumococcal serotype 11A, 11B, 11C, and 11F polysaccharide capsules. J Bacteriol 193(19):5271–5278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calix JJ, Porambo RJ, Brady AM, Larson TR, Yother J, Abeygunwardana C, Nahm MH (2012) Biochemical, genetic, and serological characterization of two capsule subtypes among Streptococcus pneumoniae serotype 20 strains: discovery of a new pneumococcal serotype. J Biol Chem 287(33):27885–27894. doi:10.1074/jbc.M112.380451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canaán-Haden L, Cremata J, Chang J, Valdes Y, Cardoso F, Bencomo V (2006) High-performance reverse phase chromatography with fluorescence detection assay for characterization and quantification of pneumococcal polysaccharides. Vaccine 24:S70–S71

    Google Scholar 

  • Capiau C, Deschamps M, Desmons PM, Laferriere CAJ, Poolman J, Prieels JP (2008) Vaccines against antigens from bacteriae. European Patent No. EP 1163000. European Patent Office, Munich, Germany

    Google Scholar 

  • Carinci V, Bernardini A, Campa C, Magagnoli C, Beccai F, D’Ascenzi S (2012) Stability studies and characterization of meningococcal A, C, Y, and W135 glycoconjugate vaccine. In: Bhattacharyya L, Rohrer JS (eds) Applications of ion chromatography in the analysis of pharmaceutical and biological products. Wiley, Hoboken

    Google Scholar 

  • Casadevall A, Pirofski L-A (2005) Feasibility and prospects for a vaccine to prevent cryptococcosis. Med Mycol 43:667–680

    CAS  PubMed  Google Scholar 

  • Celentano LP, Massari M, Paramatti D, Salmaso S, Tozzi AE, EUVAC-NET Group (2005) Resurgence of pertussis in Europe. Pediatr Infect Dis J 24:761–765. doi:10.1097/01.inf.0000177282.53500.77

    PubMed  Google Scholar 

  • Chang Q, Tzeng Y-L, Stephens DS (2012) Meningococcal disease: changes in epidemiology and prevention. Clin Epidemiol 4:237–245. doi:10.2147/CLEP.S28410

    PubMed Central  PubMed  Google Scholar 

  • Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB (2013) High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J 16(1):48–64. doi:10.1208/s12248-013-9539-6

  • Chen PS Jr, Toribara TT, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28(11):1756–1758

    Google Scholar 

  • Cherniak R, Valafar H, Morris LC, Valafar F (1998) Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. Clin Diagn Lab Immunol 5:146–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chernyak A, Kondo S, Wade TK, Meeks MD, Alzari PM, Fournier JM, Taylor RK, Kovac P, Wade WF (2002) Induction of protective immunity by synthetic Vibrio cholerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. J Infect Dis 185:950–962. doi:10.1086/339583

    CAS  PubMed  Google Scholar 

  • Cherry JD (2012) Epidemic pertussis in 2012—the resurgence of a vaccine-preventable disease. N Engl J Med 367(9):785–787. doi:10.1056/NEJMp1209051

    CAS  PubMed  Google Scholar 

  • Chow SK, Casadevall A (2011) Evaluation of Cryptococcus neoformans galactoxylomannan–protein conjugate as vaccine candidate against murine cryptococcosis. Vaccine 29(10):1891–1898. doi:10.1016/j.vaccine.2010.12.134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu CY, Liu BK, Watson D, Szu SS, Bryla D, Shiloach J, Schneerson R, Robbins JB (1991) Preparation, characterization, and immunogenicity of conjugates composed of the O-specific polysaccharide of Shigella dysenteriae type 1 (Shiga’s bacillus) bound to tetanus toxoid. Infect Immun 59:4450–4458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cieslewicz MJ, Chaffin D, Glusman G, Kasper D, Madan A, Rodrigues S, Fahey J, Wessels MR, Rubens CE (2005) Structural and genetic diversity of Group B Streptococcus capsular polysaccharides. Infect Immun 73(5):3096–3103. doi:10.1128/IAI.73.5.3096-3103.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen D, Ashkenazi S, Green MS, Gdalevich M, Robin G, Slepon R, Yavzori M, Orr N, Block C, Ashkenazi I, Shemer J, Taylor DN, Hale TL, Sadoff JC, Pavliakova D, Schneerson R, Robbins JB (1997) Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet 349:155–159. doi:10.1016/S0140-6736(96)06255-1

    CAS  PubMed  Google Scholar 

  • Cook MC, Bliu A, Kunkel JP (2013) Quantitation of serogroups in multivalent polysaccharide-based meningococcal vaccines: optimisation of hydrolysis conditions and chromatographic methods. Vaccine 31(36):3702–3711

    CAS  PubMed  Google Scholar 

  • Costantino P, Viti S, Podda A, Velmonte MA, Nencioni L, Rappuoli R (1992) Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10(10):691–698

    CAS  PubMed  Google Scholar 

  • Costantino P, Norelli F, Giannozzi A, D’Ascenzi S, Bartoloni A, Viti S, Paffetti R, Bigio M, Pennatini C, Guarnieri G, Gallo E, Averani G, Seid R, Ravenscroft N, Lazzeroni C, Kaur S, Rappuoli R, Ceccarini C (1999) Size fractionation of bacterial capsular polysaccharides for their use in conjugate vaccines. Vaccine 17(9):1251–1263

    CAS  PubMed  Google Scholar 

  • Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 6:1045–1066. doi:10.1517/17460441.2011.609554

    CAS  PubMed  Google Scholar 

  • Costantino P, Berti F, Norelli F, Bartoloni A (2008) Modified saccharides having improved stability in water. European Patent EP 1490409, 31 Dec 2008

    Google Scholar 

  • Cox AD, Perry MB (1996) Structural analysis of the O-antigen-core region of the lipopolysaccharide from Vibrio cholerae O139. Carbohydr Res 290:59–65

    CAS  PubMed  Google Scholar 

  • Cox AD, St Michael F, Aubry A, Cairns CM, Strong PC, Hayes AC, Logan SM (2013) Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 30:843–855. doi:10.1007/s10719-013-9489-3

    CAS  PubMed  Google Scholar 

  • Crane DT, Bolgiano B, Jones C (1997) Comparison of the diphtheria mutant toxin, CRM197, with a Haemophilus influenzae type-b polysaccharide-CRM197 conjugate by optical spectroscopy. Eur J Biochem 246:320–327

    CAS  PubMed  Google Scholar 

  • Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82:346–353

    PubMed Central  PubMed  Google Scholar 

  • Cui SW (2005) Structural analysis of polysaccharides. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties, and applications. Taylor & Francis Group, Florida

    Google Scholar 

  • D’Ambra AJ, Baugher JE, Concannon PE, Pon PA, Michon F (1997) Direct and indirect methods for molar-mass analysis of fragments of the capsular polysaccharides of Haemophilus influenzae type b. Anal Biochem 250(2):228–236

    PubMed  Google Scholar 

  • Danishefsky SJ, Allen JR (2000) From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew Chem Int Ed Engl 39(5):836–863

    CAS  PubMed  Google Scholar 

  • Dapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuenhne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195(3):545–555. doi:10.1128/JB.01980-12

    CAS  PubMed  Google Scholar 

  • de Santana-Filho AP, Noleto GR, Gorin PAJ, de Souza LM, Lacomini M, Sassaki GL (2012) GC–MS detection and quantification of lipopolysaccharides in polysaccharides through 3-O-acetyl fatty acid methyl esters. Carbohydr Polym 87(4):2730–2734

    Google Scholar 

  • Devi SJ (1996) Preclinical efficacy of a glucuronoxylomannan-tetanus toxoid conjugate vaccine of Cryptococcus neoformans in a murine model. Vaccine 14:841–844

    CAS  PubMed  Google Scholar 

  • Devi SJ, Schneerson R, Egan W, Ulrich TJ, Bryla D, Robbins JB, Bennett JE (1991) Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun 59:3700–3707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dische Z (1947) A new specific color reaction of hexuronic acids. J Biol Chem 167:189–198

    Google Scholar 

  • Dische Z, Shettles LB (1948) A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J Biol Chem 175(2):595–603

    Google Scholar 

  • Donnelly JJ, Deck RR, Liu MA (1990) Immunogenicity of a Haemophilus influenzae polysaccharide-Neisseria meningitidis outer membrane protein complex conjugate vaccine. J Immunol 145(9):3071–3079

    CAS  PubMed  Google Scholar 

  • Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG (2010) A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci USA 107(40):17107–17112. doi:10.1073/pnas.1002717107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Egan W (2000) Physico-chemical characterization of polysaccharide vaccines. Dev Biol (Basel) 103:3–9

    CAS  Google Scholar 

  • Egan W, Frasch CE, Anthony BF (1995) Lot-release criteria, postlicensure quality control and the Haemophilus influenzae Type b conjugate vaccines. JAMA 273(11):888–889

    CAS  PubMed  Google Scholar 

  • Egan W, Schneerson R, Werner KE, Zon G (1982) Structural studies and chemistry of bacterial capsular polysaccharides. Investigations of phosphodiester-linked capsular polysaccharides isolated from Haemophilus influenzae types a, b, c, and f: NMR spectroscopic identification and chemical modification of endgroups and the nature of base-catalyzed hydrolytic depolymerization. J Am Chem Soc 104:2898–2910

    CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  • Elson LA, Morgan WTJ (1933). A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J 27(6):1824–1828

    Google Scholar 

  • Falugi F, Petracca R, Mariani M, Luzzi E, Mancianti S, Carinci V, Melli ML, Finco O, Wack A, Di Tommaso A, De Magistris MT, Costantino P, Del Giudice G, Abringnani S, Rappuoli R, Grandi G (2001) Rationally designed strings of promiscuous CD4(+) T cell epitopes provide help to Haemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines. Eur J Immunol 31:3816–3824

    CAS  PubMed  Google Scholar 

  • Farkaš P, Bystrický S (2010) Chemical conjugation of biomacromolecules: a mini-review. Chem Pap 64(6):683–695

    Google Scholar 

  • Fattom A, Li X, Cho YH, Burns A, Hawwari A, Shepherd SE, Coughlin R, Winston S, Naso R (1995) Effect of conjugation methodology, carrier protein, and adjuvants on the immune response to Staphylococcus aureus capsular polysaccharides. Vaccine 13:1288–1293

    CAS  PubMed  Google Scholar 

  • Fattom AI, Horwith G, Fuller S, Propst M, Naso R (2004) Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 22:880–887. doi:10.1016/j.vaccine.2003.11.034

    CAS  PubMed  Google Scholar 

  • Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA et al (2013) Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med 10(9):e1001517. doi:10.1371/journal.pmed.1001517

    PubMed Central  PubMed  Google Scholar 

  • Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O-antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102:3016–3021. doi:10.1073/pnas.0500044102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiebig T, Berti F, Freiberger F, Pinto V, Claus H, Romano MR, Proietti D, Brogioni B, Stummeyer K, Berger M, Vogel U, Costantino P, Gerardy-Schahn R (2014) Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: a new perspective for vaccine development. Glycobiology 24(2):150–158. doi:10.1093/glycob/cwt102

    CAS  PubMed  Google Scholar 

  • Foglia G, Shah S, Luxemburger C, Pietrobon PJF (2012) Clostridium difficile: development of a novel candidate vaccine. Vaccine 30(29):4307–4309

    CAS  PubMed  Google Scholar 

  • Forsgren A, Riesbeck K (2008) Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clin Infect Dis 46(5):726–731

    CAS  PubMed  Google Scholar 

  • Fothergill LD, Wright J (1933) Influenzal meningitis: the relation of age incidence to the bactericidal power of blood against the causal organism. J Immunol 24:273–284

    Google Scholar 

  • Frech C, Hilbert AK, Hartmann G, Mayer K, Sauer T, Bolgiano B (2000) Physicochemical analysis of purified diphtheria toxoids: is toxoided then purified the same as purified then toxoided? Dev Biol (Basel) 103:205–215

    CAS  Google Scholar 

  • Ftacek P, Nelson V, Szu SC (2013) Immunochemical characterization of synthetic hexa-, octa- and decasaccharide conjugate vaccines for Vibrio cholerae O:1 serotype Ogawa with emphasis on antigenic density and chain length. Glycoconj J 30:871–880. doi:10.1007/s10719-013-9491-9

    CAS  PubMed  Google Scholar 

  • Gambillara V (2012) The conception and production of conjugate vaccines using recombinant DNA technology. BioPharm Int 25(1):28–32

    CAS  Google Scholar 

  • Ganeshapillai J, Vinogradov E, Rousseau J, Weese JS, Monterio MA (2008) Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units. Carbohydr Res 343:703–710. doi:10.1016/j.carres.2008.01.002

    CAS  PubMed  Google Scholar 

  • Gao F, Lockyer K, Burkin K, Crane DT, Bolgiano B (2009) Pneumococcal conjugate vaccine stability from a physico-chemical point-of-view. Poster presented at meningitis research foundation’s 2009 conference—Meningitis and septicaemia in children and adults, royal society of medicine, London, 11–12 Nov 2009

    Google Scholar 

  • Gao Q, Tontini M, Brogioni G, Nilo A, Filippini S, Harfouche C, Polito L, Romano MR, Costantino P, Berti F, Adamo R, Lay L (2013) Immunoactivity of protein conjugates of carba analogues from Neisseria meningitidis A capsular polysaccharide. ACS Chem Biol 8(11):2561–2567. doi:10.1021/cb400463u

    CAS  PubMed  Google Scholar 

  • Gening ML, Maira-Litran T, Kropec A, Skurnik D, Grout M, Tsvetkov YE, Nifantiev NE, Pier GB (2010) Synthetic β-(1 → 6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect Immun 78:764–772. doi:10.1128/IAI.01093-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giannini G, Rappuoli R, Ratti G (1984) The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 12(10):4063–4069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginsburg AS, Alderson MR (2011) New conjugate vaccines for the prevention of pneumococcal disease in developing countries. Drugs Today 47:207–214. doi:10.1358/dot.2011.47.3.1556471

    CAS  PubMed  Google Scholar 

  • Girard MP, Steele D, Chaignat CL, Kieny MP (2006) A review of vaccine research and development: human enteric infections. Vaccine 24(15):2732–2750

    CAS  PubMed  Google Scholar 

  • Goren MB, Middlebrook GM (1967) Protein conjugates of polysaccharide from Cryptococcus neoformans. J Immunol 98:901–913

    CAS  PubMed  Google Scholar 

  • Goebel WF, Avery OT (1931) Chemo-immunological studies on conjugated carbohydrate proteins. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of Type III Pneumococcus with foreign proteins. J Exp Med 54:437–447

    PubMed Central  PubMed  Google Scholar 

  • Goldblatt D, Ashton L, Zhang Y, Antonello J, Marchese RD (2011) Comparison of a new multiplex binding assay versus the enzyme-linked immunosorbent assay for measurement of serotype-specific pneumococcal capsular polysaccharide IgG. Clin Vaccine Immunol 18(10):1744–1751

    Google Scholar 

  • Gorringe AR, Pajon R (2012) Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother 8(2):174–183

    CAS  PubMed  Google Scholar 

  • Greenberg RN, Marbury TC, Foglia G, Warny M (2012) Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30(13):2245–2249

    CAS  PubMed  Google Scholar 

  • Gudlavalleti SK, Szymanski CM, Jarrell HC, Stephens DS (2006) In vivo determination of Neisseria meningitidis serogroup A capsular polysaccharide by whole cell high-resolution magic angle spinning NMR spectroscopy. Carbohydr Res 341(4):557–562

    CAS  PubMed  Google Scholar 

  • Guo YY, Anderson R, McIver J, Gupta RK, Siber GR (1998) A simple and rapid method for measuring unconjugated capsular polysaccharide (PRP) of Haemophilus influenzae type b in PRP-tetanus toxoid conjugate vaccine. Biologicals 26(1):33–38

    CAS  PubMed  Google Scholar 

  • Gupta RK, Szu SC, Finkelstein RA, Robbins JB (1992) Synthesis, characterization, and some immunological properties of conjugates composed of the detoxified lipopolysaccharide of Vibrio cholerae O1 serotype Inaba bound to cholera toxin. Infect Immun 60:3201–3208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RK, Taylor DN, Bryla DA, Robbins JB, Szu SC (1998) Phase 1 evaluation of Vibrio cholerae O1, serotype Inaba, polysaccharide-cholera toxin conjugates in adult volunteers. Infect Immun 66:3095–3099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haan A, Put RM, Beurret M (2013) HPAEC-PAD method for the analysis of alkaline hydrolyzates of Haemophilus influenzae type b capsular polysaccharide. Biomed Chromatogr 27(9):1137–1142

    CAS  PubMed  Google Scholar 

  • Halperin SA, Bettinger JA, Greenwood B, Harrison LH, Jelfs J, Ladhani SN, McIntyre P, Ramsay ME, Safadi MA (2012) The changing and dynamic epidemiology of meningococcal disease. Vaccine 30(Suppl 2):B26–B36. doi:10.1016/j.vaccine.2011.12.032

    PubMed  Google Scholar 

  • Hara S, Takemori Y, Yamaguchi M, Nakamura M, Ohkura Y (1987) Fluorometric high-performance liquid chromatography of N-acetyl-and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem 164:138–145

    CAS  PubMed  Google Scholar 

  • Harding SE, Abdelhameed AS, Morris GA (2010) Molecular weight distribution evaluation of polysaccharides and glycoconjugates using analytical ultracentrifugation. Macromol Biosci 10(7):714–720

    CAS  PubMed  Google Scholar 

  • Harding SE, Abdelhameed AS, Morris GA, Adams G, Laloux O, Cerny L, Bonnier B, Duvivier P, Conrath K, Lenfant C (2012) Solution properties of capsular polysaccharides from Streptococcus pneumoniae. Carbohydr Polym 90(1):237–242

    CAS  PubMed  Google Scholar 

  • Harrison LH, Pelton SI, Wilder-Smith A, Holst J, Safadi MA, Vazquez JA, Taha MK, LaForce FM, von Gottberg A, Borrow R, Plotkin SA (2011) The global meningococcal initiative: recommendations for reducing the global burden of meningococcal disease. Vaccine 29:3363–3371. doi:10.1016/j.vaccine.2011.02.058

    PubMed  Google Scholar 

  • Hasija M, Li L, Rahman N, Ausar SF (2013) Forced degradation studies: an essential tool for the formulation development of vaccines. Vaccine Dev Therapy 3:11–13

    Google Scholar 

  • He Y, Hou W, Thompson M, Holovics H, Hobson T, Jones MT (2014) Size exclusion chromatography of polysaccharides with reverse phase liquid chromatography. J Chromatogr A 1323:97–103. doi:10.1016/j.chroma.2013.11.010

    CAS  PubMed  Google Scholar 

  • Hellerqvist CG, Lindberg B, Svensson S, Holme T, Lindberg AA (1968) Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella typhimurium 395 ms. Carbohydr Res 8:43–55. doi:10.1016/S0008-6215(00)81689-4

    CAS  Google Scholar 

  • Hepler R, Yu Ip CC (1994) Application of capillary ion electrophoresis and ion chromatography for the determination of o-acetate groups in bacterial polysaccharides. J Chromatogr A 680:201–208

    CAS  PubMed  Google Scholar 

  • Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem 180(1):249–261

    Google Scholar 

  • Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Haishima Y (1993) Occurrence of 2-O-methyl-N-(3-deoxy-l-glycero-tetronyl)-d-perosamine (4-amino-4,6-dideoxy-d-manno-pyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem Biophys Res Commun 190:302–307. doi:10.1006/bbrc.1993.1046

    CAS  PubMed  Google Scholar 

  • Ho MM, Bolgiano B, Corbel MJ (2000) Assessment of the stability and immunogenicity of meningococcal oligosaccharide C-CRM197 conjugate vaccines. Vaccine 19:716–725

    CAS  PubMed  Google Scholar 

  • Ho MM, Lemercinier X, Bolgiano B, Crane D, Corbel MJ (2001) Solution stability studies of the subunit components of meningococcal C oligosaccharide–CRM197 conjugate vaccines. Biotechnol Appl Biochem 33:91–98

    CAS  PubMed  Google Scholar 

  • Ho MM, Mawas F, Bolgiano B, Lemercinier X, Crane DT, Huskisson R, Corbel MJ (2002) Physico-chemical and immunological examination of the thermal stability of tetanus toxoid conjugate vaccines. Vaccine 20:3509–3522

    CAS  PubMed  Google Scholar 

  • Holliday MR, Jones C (1999) Meeting report: WHO-Co-sponsored informal workshop on the use of physicochemical methods for the characterization of Haemophilus influenzae type b conjugate vaccines. Biologicals 27:51–53

    CAS  PubMed  Google Scholar 

  • Hsieh CL (2000) Characterization of saccharide-CRM197 conjugate vaccines. Dev Biol (Basel) 103:93–104

    CAS  Google Scholar 

  • Hu L, Joshi SB, Liyanage MR, Pansalawatta M, Alderson MR, Tate A, Robertson G, Maisonneuve J, Volkin DB, Middaugh CR (2013) Physical characterization and formulation development of a recombinant pneumolysoid protein-based pneumococcal vaccine. J Pharm Sci 102(2):387–400

    CAS  PubMed  Google Scholar 

  • Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thony-Meyer L (2010) Production of glycoprotein vaccines in Escherichia coli. Microb Cell Fact 9:61–73. doi:10.1186/1475-2859-9-61

    PubMed Central  PubMed  Google Scholar 

  • Ilg K, Zandomeneghi G, Rugarabamu G, Meier BH, Aebi M (2013) HR-MAS NMR reveals a pH-dependent LPS alteration by de-O-acetylation at abequose in the O-antigen of Salmonella enterica Serovar typhimurium. Carbohydr Res 382:58–64

    CAS  PubMed  Google Scholar 

  • Ito T, Higuchi T, Hirobe M, Hiramatsu K, Yokota T (1994) Identification of a novel sugar, 4-amino-4,6-dideoxy-2-O-methylmannose in the lipopolysaccharide of Vibrio cholerae O1 serotype Ogawa. Carbohydr Res 256(1):113–128

    CAS  PubMed  Google Scholar 

  • Jiao Y, Ma Z, Hodgins D, Pequegnat B, Bertolo L, Arroyo L, Monteiro MA (2013) Clostridium difficile PSI polysaccharide: synthesis of pentasaccharide repeating block, conjugation to exotoxin B subunit, and detection of natural anti-PSI IgG antibodies in horse serum. Carbohydr Res 378:15–25. doi:10.1016/j.carres.2013.03.018

    CAS  PubMed  Google Scholar 

  • Johnson I, Spence MTZ (2010) The molecular probes handbook. A guide to fluorescent probes and labeling technologies, 11th edn. Molecular Probes, Eugene

    Google Scholar 

  • Jones C (2005) NMR assays for carbohydrate-based vaccines. J Pharm Biomed Anal 38(5):840–850

    CAS  PubMed  Google Scholar 

  • Jones C, Lemercinier X (2002) Use and validation of NMR assays for the identity and O-acetyl content of capsular polysaccharides from Neisseria meningitidis used in vaccine manufacture. J Pharm Biomed Anal 30(4):1233–1247

    CAS  PubMed  Google Scholar 

  • Jones C, Lemercinier X, Crane DT, Gee CK, Austin S (2000) Spectroscopic studies of the structure and stability of glycoconjugate vaccines. Dev Biol (Basel) 103:121–136

    CAS  Google Scholar 

  • Jones C, Ravenscroft N (2008) NMR assays for carbohydrate-based vaccines. In: Holtzgrabe U, Wawer I, Diehl B (eds) NMR spectroscopy in pharmaceutical analysis. Elsevier, Oxford

    Google Scholar 

  • Jonson G, Osek J, Svennerholm AM, Holmgren J (1996) Immune mechanisms and protective antigens of Vibrio cholerae serogroup O139 as a basis for vaccine development. Infect Immun 64:3778–3785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jumel K, Ho MM, Bolgiano B (2002) Evaluation of meningococcal C oligosaccharide conjugate vaccines by size-exclusion chromatography/multi-angle laser light scattering. Biotechnol Appl Biochem 36:219–226

    CAS  PubMed  Google Scholar 

  • Kabanova A, Adamo R, Proietti D, Berti F, Tontini M, Rappuoli R, Costantino P (2010a) Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM197 glycoconjugates. Glycoconj J 27:501–513. doi:10.1007/s10719-010-9295-0

    CAS  PubMed  Google Scholar 

  • Kabanova A, Margarit I, Berti F, Romano MR, Grandi G, Bensi G, Chiarot E, Proietti D, Swennen E, Cappelletti E, Fontani P, Casini D, Adamo R, Pinto V, Skibinski D, Capo S, Buffi G, Gallotta M, Christ WJ, Campbell AS, Pena J, Seeberger PH, Rappuoli R, Costantino P (2010b) Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 29:104–114. doi:10.1016/j.vaccine.2010.09.018

    CAS  PubMed  Google Scholar 

  • Kalay H, Ambrosini M, van Berkel PH, Parren PW, van Kooyk Y, García Vallejo JJ (2012) Online nanoliquid chromatography–mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis. Anal Biochem 423(1):153–162

    CAS  PubMed  Google Scholar 

  • Kao G, Tsai CM (2004) Quantification of O-acetyl, N-acetyl and phosphate groups and determination of the extent of O-acetylation in bacterial vaccine polysaccharides by high-performance anion-exchange chromatography with conductivity detection (HPAEC-CD). Vaccine 22(3–4):335–344

    CAS  PubMed  Google Scholar 

  • Kenne L, Lindberg B, Unger P, Gustafsson B, Holme T (1982) Structural studies of the Vibrio cholerae O-antigen. Carbohydr Res 100:341–349

    CAS  PubMed  Google Scholar 

  • Killen KP, Griffin TJ, Cartee RT, Thanawastien A (2013) Development of protein capsular matrix vaccine platform technology. Bioprocess Int 11:S26–S32

    Google Scholar 

  • Kilpi T, Åhman H, Jokinen J, Lankinen KS, Palmu A, Savolainen H, Gronholm M, Leinonen M, Hovi T, Eskola J, Kayhty H, Bohidar N, Sadoff JC, Finnish Otitis Medisa Study Group, Mäkelä PH (2003) Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin Infect Dis 37(9):1155–1164

    Google Scholar 

  • Kim JS, Laskowich ER, Arumugham RG, Kaiser RE, MacMichael GJ (2005) Determination of saccharide content in pneumococcal polysaccharides and conjugate vaccines by GC-MSD. Anal Biochem 347(2):262–274

    CAS  PubMed  Google Scholar 

  • Kim JS, Laskowich ER, Michon F, Kaiser RE, Arumugham RG (2006a) Monitoring activation sites on polysaccharides by GC-MS. Anal Biochem 358(1):136–142

    CAS  PubMed  Google Scholar 

  • Kim JS, Reuhs BL, Michon F, Kaiser RE, Arumugham RG (2006b) Addition of glycerol for improved methylation linkage analysis of polysaccharides. Carbohydr Res 341(8):1061–1064

    CAS  PubMed  Google Scholar 

  • Klein DL, Martinez JE, Hickey MH, Hassouna F, Zaman K, Steinhoff M (2012) Development and characterization of a multiplex bead-based immunoassay to quantify pneumococcal capsular polysaccharide-specific antibodies. Clin Vaccine Immunol 19(8):1276–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kniskern PJ, Ip CC, Hagopian A, Hennessey JP Jr, Miller WJ, Kubek DJ, Burke PD, Marburg S, Tolman RL (2010) Pneumococcal polysaccharide conjugate vaccine. Office E.P. 92300655.5. EP 0497525B2

    Google Scholar 

  • Kniskern PJ, Marburg S (1994) Conjugation: design, chemistry, and analysis. In: Ellis RW, Granoff DM (eds) Development and clinical uses of Haemophilus b conjugate vaccines. Marcel Dekker, New York

    Google Scholar 

  • Konadu EE, Shiloach JJ, Bryla DAD, Robbins JB, Szu SC (1996) Synthesis, characterization, and immunological properties in mice of conjugates composed of detoxified lipopolysaccharide of Salmonella paratyphi A bound to tetanus toxoid with emphasis on the role of O-acetyls. Infect Immun 64:2709–2715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konadu EY, Lin FYC, Ho VA, Thuy NT, Van Bay P, Thanh TC, Khiem HB, Trach DD, Karpas AB, Li J, Bryla DA, Robbins JB, Szu SC (2000) Phase 1 and phase 2 studies of Salmonella enterica Serovar paratyphi A O-specific polysaccharide-tetanus toxoid conjugates in adults, teenagers, and 2- to 4-year-old children in Vietnam. Infect Immun 68:1529–1534. doi:10.1128/IAI.68.3.1529-1534.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kowarik M, Ravenscroft N, Braun M, Wetter M, Haeuptle MA, Steffen M, Carranza P, Wacker M (2012) Development and analysis of a glycoconjugate vaccine against Shigella flexneri 2a. In: 5th Baltic meeting on microbial carbohydrates, Suzdal, Russia, September 2012

    Google Scholar 

  • Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9):1957–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubler-Kielb J, Vinogradov E, Lagergård T, Ginzberg A, King JD, Preston A, Maskell DJ, Pozsgay V, Keith JM, Robbins JB, Schneerson R (2011) Oligosaccharide conjugates of Bordetella pertussis and bronchiseptica induce bactericidal antibodies, an addition to pertussis vaccine. PNAS 108(10):4087–4092. doi:10.1073/pnas.1100782108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laferriere C, Ravenscroft N, Wilson S, Combrink J, Gordon L, Petre J (2011) Experimental design to optimize an Haemophilus influenzae type b conjugate vaccine made with hydrazide-derivatized tetanus toxoid. Glycoconjugate J 28(7):463–472

    CAS  Google Scholar 

  • Lamb DH, Lei QP, Hakim N, Rizzo S, Cash P (2005) Determination of meningococcal polysaccharides by capillary zone electrophoresis. Anal Biochem 338(2):263–269

    CAS  PubMed  Google Scholar 

  • Lamb DH, Summa L, Lei QP, Duval G, Adam O (2000) Determination of free carrier protein in protein-polysaccharide conjugate vaccines by micellar electrokinetic chromatography. J Chromatogr A 894(1–2):311–318

    CAS  PubMed  Google Scholar 

  • Lancaster L, Saydam M, Markey K, Ho MM, Mawas F (2011) Immunogenicity and physico-chemical characterization of a candidate conjugate vaccine against Group B Streptococcus serotypes Ia, Ib and III. Vaccine 29:3213–3221. doi:10.1016/j.vaccine.2011.02.039

    CAS  PubMed  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E et al (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13(12):1057–1098

    PubMed  Google Scholar 

  • Lee CH, Kuo WC, Beri S, Kapre S, Joshi JS, Bouveret N, LaForce FM, Frasch CE (2009) Preparation and characterization of an immunogenic meningococcal Group A conjugate vaccine for use in Africa. Vaccine 27(5):726–732

    CAS  PubMed  Google Scholar 

  • Lee JC, Gambillara V, Alaimo C, Lipowsky G, Kowarik M, Desgrandchamps D, Wacker M (2011) Glycoprotein vaccines: a new approach to prevent Staphylococcus aureus infection by combining capsular polysaccharide and protein antigens. In: 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, IL, 17–20 Sept 2011

    Google Scholar 

  • Lei QP, Lamb DH, Heller R, Pietrobon P (2000a) Quantitation of low level unconjugated polysaccharide in tetanus toxoid-conjugate vaccine by HPAEC/PAD following rapid separation by deoxycholate/HCl. J Pharm Biomed Anal 21:1087–1091

    CAS  PubMed  Google Scholar 

  • Lei QP, Lamb DH, Shannon AG, Cai X, Heller RK, Huang M, Zablackis E, Ryall R, Cash P (2004) Quantification of residual EDU (N-ethyl-N′-(dimethylaminopropyl)carbodiimide (EDC) hydrolyzed urea derivative) and other residual by LC-MS/MS. J Chromatogr B 813:103–112

    CAS  Google Scholar 

  • Lei QP, Shannon AG, Heller RK, Lamb DH (2000b) Quantification of free polysaccharide in meningococcal polysaccharide-diphtheria toxoid conjugate vaccines. Dev Biol (Basel) 103:259–264

    CAS  Google Scholar 

  • Lemercinier X, Jones C (1996) Full 1H NMR assignment and detailed O-acetylation patterns of capsular polysaccharides from Neisseria meningitidis used in vaccine production. Carbohydr Res 296:83–96

    CAS  PubMed  Google Scholar 

  • Lemercinier X, Jones C (2000) An NMR spectroscopic identity test for the control of the capsular polysaccharide from Haemophilus influenzae type b. Biologicals 28:175–183

    CAS  PubMed  Google Scholar 

  • Li Y, Lander R, Manger W, Lee A (2004) Determination of lipid profile in meningococcal polysaccharide using reversed-phase liquid chromatography. J Chromatogr B 804(2):353–358

    Google Scholar 

  • Lin FY, Ho VA, Khiem HB, Trach DD, Bay PV, Thanh TC, Kossaczka Z, Bryla DA, Shiloach J, Robbins JB, Schneerson R, Szu SC (2001) The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med 344:1263–1269. doi:10.1056/NEJM200104263441701

    CAS  PubMed  Google Scholar 

  • Lindberg AA (1999) Glycoprotein conjugate vaccines. Vaccine 17(Suppl 2):S28–S36

    CAS  PubMed  Google Scholar 

  • Lipinski T, Fitieh A, St Pierre J, Ostergaard HL, Bundle DR, Touret N (2013) Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-glucan. J Immunol 190(8):4116–4128. doi:10.4049/jimmunol.1202937

    CAS  PubMed  Google Scholar 

  • Lipinski T, Wu X, Sadowska J, Kreiter E, Yasui Y, Cheriaparambil S, Rennie R, Bundle DR (2012) A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 30(44):6263–6269. doi:10.1016/j.vaccine.2012.08.010

    CAS  PubMed  Google Scholar 

  • Losonsky GA, Lim Y, Motamedi P, Comstock LE, Johnson JA, Morris JG Jr, Tacket CO, Kaper JB, Levine MM (1997) Vibriocidal antibody responses in North American volunteers exposed to wild-type or vaccine Vibrio cholerae O139: specificity and relevance to immunity. Clin Diagn Lab Immunol 4:264–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Lundborg M, Widmalm G (2011) Structure analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517. doi:10.1021/ac1032534

    CAS  PubMed  Google Scholar 

  • Lyngby J, Olsen LH, Eidem T, Lundanes E, Jantzen E (2002) Quantification of lipopolysaccharides in outer membrane vesicle vaccines against meningococcal disease. High-performance liquid chromatographic determination of the constituent 3-hydroxy-lauric acid. Biologicals 30(1):7–13

    CAS  PubMed  Google Scholar 

  • MacLennan CM, Martin LB, Micoli M (2014) Vaccines against invasive Salmonella diseases: current status and future directions. Hum Vaccine Immunother 10(6):1–16

    Google Scholar 

  • MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465

    PubMed Central  Google Scholar 

  • MacNair JE, Desai T, Teyral J, Abeygunawardana C, Hennessey JP Jr (2005) Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX®23). Biologicals 33:49–58

    CAS  PubMed  Google Scholar 

  • Madhi SA, Dangor Z, Heath PT, Schrag S, Izu A, Sobanjo-ter Meulen A, Dull PM (2013). Considerations for a phase-III trial to evaluate a Group B Streptococcus polysaccharide-protein conjugate vaccine in pregnant women for the prevention of early-and late-onset invasive disease in young-infants. Vaccine 31:D52–D57

    Google Scholar 

  • Malito E, Bursulaya B, Chen C, Lo Surdo P, Picchianti M, Balducci E, Biancucci M, Brock A, Berti F, Bottomley MJ, Nissum M, Costantino P, Rappuoli R, Spraggon G (2012) Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci USA 109(14):5229–5234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malito E, Faleri A, Lo Surdo P, Veggi D, Maruggi G, Grassi E, Cartocci E, Bertoldi I, Genovese A, Santini L, Romagnoli G, Borgogni E, Brier S, Lo Passo C, Domina M, Castellino F, Felici F, van der Veen S, Johnson S, Lea SM, Tang CM, Pizza M, Savino S, Norais N, Rappuoli R, Bottomley MJ, Masignani V (2013) Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Proc Natl Acad Sci USA 110(9):3304–3309. doi:10.1073/pnas.1222845110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malkiel S, Liao L, Cunningham MW, Diamond B (2000) T-Cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Infect Immun 68:5803–5808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marburg S, Jorn D, Tolman RL, Arison B, McCauley J, Kniskern PJ, Hagopian A, Vella PP (1986) Bimolecular chemistry of macromolecules: synthesis of bacterial polysaccharide conjugates with Neisseria meningitidis membrane protein. J Am Chem Soc 108:5282–5287

    CAS  Google Scholar 

  • Marburg S, Tolman RL, Kniskern PJ, Miller WJ, Hagopian A, Ip CC, Hennessey JP Jr, Kubek DJ, Burke PD (1997) US Patent 5,623,057. U.S. Patent and Trademark Office, Washington, DC, 22 April 1997

    Google Scholar 

  • Martin LB (2013) Development of a conjugate vaccines for enteric fever. In: 8th International conference of typhoid fever and other invasive Salmonelloses, Dhaka, Bangladesh, March 2013

    Google Scholar 

  • Martin CE, Broecker F, Oberli MA, Komor J, Mattner J, Anish C, Seeberger PH (2013) Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 135:9713–9722. doi:10.1021/ja401410y

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Nieuwenhuis EE, Cisneros RL, Ruiz-Perez B, Yamaguchi K, Blumberg RS, Onderdonk AB (2004) Protective effect of ethyl-3-(3-dimethyl aminopropyl) urea dihydrochloride (EDU) against LPS-induced death in mice. J Med Microbiol 53(2):97–102

    CAS  PubMed  Google Scholar 

  • McCarthy PC, Saksena R, Peterson DC, Lee CH, An Y, Cipollo JF, Vann WF (2013) Chemoenzymatic synthesis of immunogenic meningococcal Group C polysialic acid-tetanus Hc fragment glycoconjugates. Glycoconj J 30:857–870. doi:10.1007/s10719-013-9490-x

    CAS  PubMed  Google Scholar 

  • McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O’Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Burton DR, Koff WC, Walker LM, Phogat S, Wyatt R, Orwenyo J, Wang LX, Arthos J, Bewley CA, Mascola JR, Nabel GJ, Schief WR, Ward AB, Wilson IA, Kwong PD (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480(7377):336–343. doi:10.1038/nature10696

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMaster R (2000) Purification of polysaccharide-protein conjugate vaccines by ultrafiltration with ammonium sulfate solutions. US Patent 6,146,902, 14 Nov 2000

    Google Scholar 

  • McNeely TB, Staub JM, Rusk CM, Blum MJ, Donnelly JJ (1998) Antibody responses to capsular polysaccharide backbone and O-acetate side groups of Streptococcus pneumoniae type 9V in humans and rhesus macaques. Infect Immun 66(8):3705–3710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meeks MD, Saksena R, Ma X, Wade TK, Taylor RK, Kovac P, Wade WF (2004) Synthetic fragments of Vibrio cholerae O1 Inaba O-specific polysaccharide bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect Immun 72:4090–4101. doi:10.1128/IAI.72.7.4090-4101.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metz B, Hendriksen CF, Jiskoot W, Kersten GF (2002) Reduction of animal use in human vaccine quality control: opportunities and problems. Vaccine 20:2411–2430

    PubMed  Google Scholar 

  • Metz B, Tilstra W, van der Put R, Spruit N, van den IJssel J, Robert J, Hendrikson C, Kersten G (2013) Physicochemical and immunochemical assays for monitoring consistent production of tetanus toxoid. Biologicals 41(4):231–237

    Google Scholar 

  • Michon F, Moore SL, Kim J, Blake MS, Auzanneau FI, Johnston BD, Johnson MA, Pinto BM (2005) Doubly branched hexasaccharide epitope on the cell wall polysaccharide of group A streptococci recognized by human and rabbit antisera. Infect Immun 73:6383–6389. doi:10.1128/IAI.73.10.6383-6389.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micoli F, Ravenscroft N, Cescutti P, Stefanetti G, Londero S, Rondini S, MacLennan CA (2014) Structural analysis of O-polysaccharide chains extracted from different Salmonella typhimurium strains. Carbohydr Res 385:1–8

    CAS  PubMed  Google Scholar 

  • Micoli F, Romano MR, Tontini M, Cappelletti E, Massimiliano G, Proietti D, Rondini S, Swennen E, Santini L, Filippini S, Balochi C, Adamo R, Pluschke G, Norheim G, Pollard A, Saul A, Rappuoli R, MacLennan CA, Berti F, Costantino P (2013a) Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc Natl Acad Sci USA 110(47):19077–19082. doi:10.1073/pnas.1314476110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micoli F, Rondini S, Gavini M, Pisoni I, Lanzilao L, Colucci AM, Giannelli AM, Pippi F, Sollai L, Pinto V, Berti F, MacLennan CA, Martin LB, Saul A (2013b) A scalable method for O-antigen purification applied to various Salmonella serovars. Anal Biochem 434:136–145. doi:10.1016/j.ab.2012.10.038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micoli F, Rondini S, Pisoni I, Giannelli C, Di Cioccio V, Costantion P, Saul A, Martin LB (2012) Production of a conjugate vaccine for Salmonella enterica Serovar typhi from Citrobacter Vi. Vaccine 30:853–861. doi:10.1016/j.vaccine.2011.11.108

    CAS  PubMed  Google Scholar 

  • Micoli F, Rondini S, Pisoni I, Proietti D, Berti F, Costantino P, Rappuoli R, Szu S, Saul A, Martin LB (2011a) Vi-CRM197 as a new conjugate vaccine against Salmonella typhi. Vaccine 29(4):712–720. doi:10.1016/j.vaccine.2010.11.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micoli F, Rondini S, Gavini M, Lanzilao L, Medaglini D, Saul A, Martin LB (2011b) O:2-CRM197 conjugates against Salmonella paratyphi A. PLoS ONE 7:e47039–e47039. doi:10.1371/journal.pone.0047039

    Google Scholar 

  • Mistretta N, Danve E, Moreau M (2010) Conjugates obtained by reductive amination of the pneumococcus serotype 5 capsular polysaccharide. US Patent 7,812,006, 12 Oct 2010

    Google Scholar 

  • Mittermayr S, Bones J, Guttman A (2013) Unraveling the glyco-puzzle: glycan structure identification by capillary electrophoresis. Anal Chem 85(9):4228–4238

    CAS  PubMed  Google Scholar 

  • Monteiro MA, Ma Z, Bertolo L, Jiao Y, Arroyo L, Hodgins D, Mallozzi M, Vedantam G, Sagermann M, Sundsmo J, Chow H (2013) Carbohydrate-based Clostridium difficile vaccines. Expert Rev Vaccines 12:421–431. doi:10.1586/erv.13.9

    CAS  PubMed  Google Scholar 

  • Morelli L, Lay L (2013) Synthesis of Neisseria meningitidis X capsular polysaccharide fragments. ARKIVOC (ii):166–184

    Google Scholar 

  • Morelli L, Cancogni D, Tontini M, Nilo A, Filippini S, Costantino P, Romano MR, Berti F, Adamo R, Lay L (2014) Synthesis and Immunological Evaluation of Protein Conjugates of Neisseria meningitidis X Capsular Polysaccharide Fragments. Beilstein J Org Chem 2014 (in press)

    Google Scholar 

  • Mosley SL, Rancy PC, Peterson DC, Vionnet J, Saksena R, Vann WF (2010) Chemoenzymatic synthesis of conjugatable oligosialic acids. Biocatal Biotransform 28:41–50. doi:10.3109/10242420903388694

    CAS  Google Scholar 

  • Muindi KM, McCarthy PC, Wang T, Vionnet J, Jankowska E, Vann WF (2013) Characterization of the meningococcal serogroup X capsule N-acetylglucosamine-1-phosphotransferase. Glycobiology 24(2):139–149. doi:10.1093/glycob/cwt091

    PubMed  Google Scholar 

  • Mukherjee J, Nussbaum G, Scharff MD, Casadevall A (1995) Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med 181:405–409

    CAS  PubMed  Google Scholar 

  • Munoz EC, Baldor CT, Munoz ME, Cabrera RA, Infante JFB, Sierra GG (2000) Identification, interaction and Kd studies of bacterial biopolymers by use of superose 6 gels and UV monitoring. Acta Chromatographica 10:147–156

    CAS  Google Scholar 

  • Nakouzi A, Zhang T, Oscarson S, Casadevall A (2009) The common Cryptococcus neoformans glucuronoxylomannan M2 motif elicits non-protective antibodies. Vaccine 27:3513–3518. doi:10.1016/j.vaccine.2009.03.089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni J, Song H, Wang Y, Stamatos NM, Wang LX (2006) Toward a carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of oligomannose-containing glycoconjugates. Bioconjugate Chem 17:493–500. doi:10.1021/bc0502816

    CAS  Google Scholar 

  • Nitz M, Ling C-C, Otter A, Cutler JE, Bundle DR (2002) The unique solution structure and immunochemistry of the Candida albicans beta-1,2-mannopyranan cell wall antigens. J Biol Chem 277:3440–3446. doi:10.1074/jbc.M109274200

    CAS  PubMed  Google Scholar 

  • Noe SM, Green MA, HogenEsch H, Hem SL (2010) Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28(20):3588–3594

    CAS  PubMed  Google Scholar 

  • Nurkka A, Åhman H, Yaich M, Eskola J, Käyhty H (2001) Serum and salivary anti-capsular antibodies in infants and children vaccinated with octavalent pneumococcal conjugate vaccines, PncD and PncT. Vaccine 20(1):194–201

    CAS  PubMed  Google Scholar 

  • Oberli MA, Hecht ML, Bindschädler P, Adibekian A, Adam T, Seeberger PH (2011) A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 18(5):580–588. doi:10.1016/j.chembiol.2011.03.009

    CAS  PubMed  Google Scholar 

  • Oliver MB, Jones C, Larson TR, Calix JJ, Zartler ER, Yother J, Nahm MH (2013) Streptococcus pneumoniae serotype 11D has a bi-specific glycosyltransferase and expresses two different capsular polysaccharide repeating units. J Biol Chem 288(30):21945–21954. doi:10.1074/jbc.M113.488528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oscarson S, Alpe M, Svahnberg P, Nakouzi A, Casadevall A (2005) Synthesis and immunological studies of glycoconjugates of Cryptococcus neoformans capsular glucuronoxylomannan oligosaccharide structures. Vaccine 23:3961–3972. doi:10.1016/j.vaccine.2005.02.029

    CAS  PubMed  Google Scholar 

  • Paoletti LC, Kasper DL (2003) Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opin Biol Ther 3:975–984. doi:10.1517/14712598.3.6.975

    CAS  PubMed  Google Scholar 

  • Paoletti LC, Kasper DL, Michon F (1992a) Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. J Clin Invest 89(1):203–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paoletti LC, Kasper DL, Michon F, DiFabio J, Holme K, Jennings HJ, Wessels MR (1990) An oligosaccharide-tetanus toxoid conjugate vaccine against type III group B Streptococcus. J Biol Chem 265(30):18278–18283

    CAS  PubMed  Google Scholar 

  • Paoletti LC, Wessels MR, Michon F, DiFabio J, Jennings HJ, Kasper DL (1992b) Group B Streptococcus type II polysaccharide-tetanus toxoid conjugate vaccine. Infect Immun 60(10):4009–4014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MCC, Nahm MH (2007) Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Micro 45(4):1225–1233. doi:10.1128/IAI.00510-07

    CAS  Google Scholar 

  • Park JT, Johnson MJ (1949) A submicrodetermination of glucose. J Biol Chem 181:149–151

    CAS  PubMed  Google Scholar 

  • Peeters CC, Tenbergen-Meekes AMJ, Poolman JT, Zegers BJ, Rijkers GT (1992) Immunogenicity of a Streptococcus pneumoniae type 4 polysaccharide-protein conjugate vaccine is decreased by admixture of high doses of free saccharide. Vaccine 10(12):833–840

    CAS  PubMed  Google Scholar 

  • Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334(6059):1097–1103. doi:10.1126/science.1213256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peltola H, Käythy H, Sivonen A, Mäkelä PH (1977) Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 60(5):730–737

    CAS  PubMed  Google Scholar 

  • Petersen B, Hindsgaul O, Meier S (2013) Profiling of carbohydrate mixtures at unprecedented resolution using high-precision 1H-13C chemical shift measurements and a reference library. Analyst. doi:10.1039/C3AN01922E

    PubMed  Google Scholar 

  • Phalipon A, Mulard LA, Sansonetti PJ (2008) Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect 10:1057–1062. doi:10.1016/j.micinf.2008.07.016

    CAS  PubMed  Google Scholar 

  • Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen D, Sansonetti PJ, Mulard LA (2009) A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J Immunol 182:2241–2247. doi:10.4049/jimmunol.0803141

    CAS  PubMed  Google Scholar 

  • Pinto V, Berti F (2014) Exploring the Group B Streptococcus capsular polysaccharides: the structural diversity provides the basis for development of NMR-based identity assays. J Pharm Biomed Anal 98:9–15

    CAS  PubMed  Google Scholar 

  • Pittman M (1931) Variation and type specificity in the bacterial species Haemophilus influenzae. J Exp Med 53:471–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Podda A (2010) Aims and role of Novartis Vaccines Institute for Global Health (NVGH). Procedia Vaccinol 2(2):124–127

    Google Scholar 

  • Rohrer JS, Basumallick L, Hurum D (2013) High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate analysis of glycoproteins. Biochem (Moscow) 78(7):697–709

    Google Scholar 

  • Pon RA (2012) Exploiting the bacterial surface: the successful application of glycoconjugate vaccines. In: Reid CW, Twine SM, Reid AN (eds) Bacterial glycomics: current research, technology, and applications. Academic Press, Norfolk

    Google Scholar 

  • Poolman J, Borrow R (2011) Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines. Expert Rev Vaccines 10(3):307–322

    CAS  PubMed  Google Scholar 

  • Porro M (1994) Oligosaccharide conjugate vaccines US Patent 5,306,492. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Pozzi C, Wilk K, Lee JC, Gening M, Nifantiev N, Pier GB (2012) Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS ONE 7:e46648. doi:10.1371/journal.pone.0046648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad AK (2011) Multivalent pneumococcal polysaccharide-protein conjugate composition. US Patent 7,955,605. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Proietti D, Abballe F, Bardotti A, Ricci S, D’Ascenzi S (2005) Chromatographic characterization of bacterial oligosaccharides by anion exchange profiles combining different detection techniques. Glycoconj J 22(4–6):232 (Abstract P001 from GLYCO XVIII, the XVIII international symposium on glycoconjugates, September 4–9, 2005, Firenze, Italy)

    Google Scholar 

  • Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E, Kaliskova E, Kohl I, Lommel P, Poolman J, Prieels JP, Schuerman L (2006) Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 367:740–748

    CAS  PubMed  Google Scholar 

  • Pujar NS, Huang NF, Daniels CL, Dieter L, Gayton MG, Lee AL (2004) Base hydrolysis of phosphodiester bonds in pneumococcal polysaccharides. Biopolymers 75(1):71–84

    CAS  PubMed  Google Scholar 

  • Qadri F, Ahmed F, Karim MM, Wenneras C, Begum YA, Abdus Salam M, Albert MJ, McGhee JR (1999) Lipopolysaccharide- and cholera toxin-specific subclass distribution of B-cell responses in cholera. Clin Diagn Lab Immunol 6:812–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi XY, Keyhani NO, Lee YC (1988) Spectroscopic determination of hydrazine, hydrazides, and their mixtures with trinitrobenzenesulfonic acid. Anal Biochem 175:139–144

    CAS  PubMed  Google Scholar 

  • Rahman MM, Guard-Petter J, Carlson RW (1997) A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide. J Bacteriol 179:2126–2131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravenscroft N (2000) The application of NMR spectroscopy to track the industrial preparation of polysaccharide and derived glycoconjugate vaccines. Pharmeuropa, Special Edition, pp 131–144

    Google Scholar 

  • Ravenscroft N, Averani G, Bartoloni A, Berti S, Bigio M, Carinci V, Costantino P, D’Ascenzi S, Giannozzi A, Norelli F, Pennatini C, Proietti D, Ceccarini C, Cescutti P (1999) Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines. Vaccine 17:2802–2816

    CAS  PubMed  Google Scholar 

  • Ravenscroft N, D’Ascenzi S, Proietti D, Norelli F, Costantino P (2000) Physicochemical characterisation of the oligosaccharide component of vaccines. Dev Biol (Basel) 103:35–47

    CAS  Google Scholar 

  • Ravenscroft N, Feavers IM (2006) Conjugate vaccines. In: Frosch M, Maiden M (eds) Meningococcal disease. Pathogenicity and prevention. Wiley-VCH, Weinheim

    Google Scholar 

  • Ravenscroft N, Wheeler JX, Jones C (2010) Bioanalysis of meningococcal vaccines. Bioanalysis 2(2):343–361

    CAS  PubMed  Google Scholar 

  • Ravenscroft N, Fernandez F, Braun M, Wetter M, Haeuptle MA, Steffen M, Carranza P, Gambillara V, Kowarik M, Wacker M (2012) Development and analysis of a glycoconjugate vaccine against Shigellosis. In: 26th International carbohydrate symposium. Madrid, July 2012

    Google Scholar 

  • Reid CW, Vinogradov E, Li J, Jarrell HC, Logan SM, Brisson JR (2012) Structural characterization of surface glycans from Clostridium difficile. Carbohydr Res 354:65–73. doi:10.1016/j.carres.2012.02.002

    CAS  PubMed  Google Scholar 

  • Ricci S, Bardotti A, D’Ascenzi S, Ravenscroft N (2001) Development of a new method for the quantitative analysis of extracellular polysaccharide of Neisseria meningitidis serogroup A by use of high-performance anion-exchange chromatography with pulsed-amperometric detection. Vaccine 19:1989–1997

    CAS  PubMed  Google Scholar 

  • Robbins JR, Schneerson R, Pittman M (1984) Haemophilus influenzae type b infectlons. In: Germanier R (ed) Bacterial vaccines. Academic Press, New York

    Google Scholar 

  • Rodriguez ME, van den Dobbelsteen GP, Oomen LA, de Weers O, van Buren L, Beurret M, Poolman JT, Hoogerhout P (1998) Immunogenicity of Streptococcus pneumoniae type 6B and 14 polysaccharide-tetanus toxoid conjugates and the effect of uncoupled polysaccharide on the antigen-specific immune response. Vaccine 16(20):1941–1949

    CAS  PubMed  Google Scholar 

  • Romano MR, Leuzzi R, Cappelletti E, Tontini M, Nilo A, Proietti D, Berti F, Costantino P, Adamo R, Scarselli M (2014) Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins 6(4):1385–1396. doi:10.3390/toxins6041385

    PubMed Central  PubMed  Google Scholar 

  • Romanow A, Haselhorst T, Stummeyer K, Claus H, Bethe A, Muhlenhoff M, Vogel U, von Itzstein M, Gerardy-Schahn R (2013) Biochemical and biophysical characterization of the sialyl/hexosyl-transferase synthesizing the meningococcal serogroup W135 heteropolysaccharide capsule. J Biol Chem 288(17):11718–11730. doi:10.1074/jbc.M113.452276

  • Ruiz-Perez B, Cisneros RL, Matsumoto T, Miller RJ, Vasios G, Calias P, Onderdonk AB (2003) Protection against lethal intra-abdominal sepsis by 1-(3-dimethylaminopropyl)-3-ethylurea. J Infect Dis 188(3):378–387

    CAS  PubMed  Google Scholar 

  • Ruttens B, Kováč P (2006) Synthesis of spacer-equipped phosphorylated di-, tri- and tetrasaccharide fragments of the O-specific polysaccharide of Vibrio cholerae O139. Carbohydr Res 341:1077–1080. doi:10.1016/j.carres.2006.04.007

    CAS  PubMed  Google Scholar 

  • Sabharwal H, Michon F, Nelson D, Dong W, Fuchs K, Manjarrez RC, Sarkar A, Uitz C, Viteri-Jackson A, Suarez RSR, Blake M, Zabriskie JB (2006) Group A Streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. J Infect Dis 193:129–135. doi:10.1086/498618

    CAS  PubMed  Google Scholar 

  • Saksena R, Ma X, Wade TK, Kovac P, Wade WF (2005) Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O1, serotype Ogawa. Carbohydr Res 340(14):2256–2269. doi:10.1016/j.carres.2005.07.017

    CAS  PubMed  Google Scholar 

  • Saksena R, Ma X, Wade TK, Kovac P, Wade WF (2006) Length of the linker and the interval between immunizations influences the efficacy of Vibrio cholerae O1, Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol Med Microbiol 47(1):116–128. doi:10.1111/j.1574-695X.2006.00071.x

    CAS  PubMed  Google Scholar 

  • Salvadori LG, Blake MS, McCarty M, Tai JY, Zabriskia JB (1995) Group A streptococcus-liposome ELISA antibody titers to group A polysaccharide and opsonophagocytic capabilities of the antibodies. J Infect Dis 171:593–600

    CAS  PubMed  Google Scholar 

  • Santosham M, Wolff M, Reid R, Hohenboken M, Bateman M, Goepp J et al (1991) The efficacy in Navajo infants of a conjugate vaccine consisting of Haemophilus influenzae type b polysaccharide and Neisseria meningitidis outer-membrane protein complex. N Engl J Med 324:1767–1772

    CAS  PubMed  Google Scholar 

  • Sawicki E, Hauser TR, Stanley TW, Elbert W (1961) The 3-methyl-2-benzothiazolone hydrazone test: sensitive new methods for the detection, rapid estimation, and determination of aliphatic aldehydes. Anal Chem 33:93–96

    CAS  Google Scholar 

  • Schneerson R, Barrera O, Sutton A, Robbins JB (1980) Preparation, characterization and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 152:361–376

    CAS  PubMed  Google Scholar 

  • Schuchat A (1998) Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clin Microbiol Rev 11:497–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz D, Rapp P (1991) Properties of the polyalcohol prepared from the β-d-glucan schizophyllan by periodate oxidation and borohydride reduction. Carbohydr Res 222:223–231

    CAS  PubMed  Google Scholar 

  • Seid RC Jr, Boykins RA, Liu DF, Kimbrough KW, Hsieh CL, Eby R (1989) Chemical evidence for covalent linkages of a semisynthetic glycoconjugate vaccine for Haemophilus influenzae type b disease. Glycoconjugate J 6(4):489–497

    Google Scholar 

  • Schafer DE, Toll B, Schuman RF, Nelson BL, Mond JJ, Lees A (2000) Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) for use in protein polysaccharide conjugate vaccines and immunological reagents. II. Selective crosslinking of proteins to CDAP-activated polysaccharides. Vaccine 18:1273–1281

    Google Scholar 

  • Shikhman AR, Greenspan NS, Cunningham MW (1993) A subset of mouse monoclonal antibodies cross-reactive with cytoskeletal proteins and group A streptococcal M proteins recognizes N-acetyl-beta-D-glucosamine. J Immunol 151:3902–3913

    CAS  PubMed  Google Scholar 

  • Shinefield H, Black S, Fattom A, Horwith G, Rasgon S, Ordonez J, Yeoh H, Law D, Robbins JB, Schneerson R, Muenz L, Fuller S, Johnson J, Fireman B, Alcorn H, Naso R (2002) Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 346:491–496. doi:10.1056/NEJMoa011297

    PubMed  Google Scholar 

  • Shinefield HR (2010) Overview of the development and current use of CRM197 conjugate vaccines for pediatric use. Vaccine 28(27):4335–4339

    CAS  PubMed  Google Scholar 

  • Silveira IA, Bastos RC, Neto MS, Laranjeira AP, Assis EF, Fernandes SA, Leal ML, Silva WC, Lee CH, Frasch CE, Peralta JM, Jessouroun E (2007) Characterization and immunogenicity of meningococcal group C conjugate vaccine prepared using hydrazide-activated tetanus toxoid. Vaccine 25(41):7261–7270

    CAS  PubMed  Google Scholar 

  • Simon R, Tennant MS, Wang JY, Schmidlein PJ, Lees A, Ernst RK, Pasetti MF, Galen JE, Levine MM (2011) Salmonella enterica Serovar enteritidis core O polysaccharide conjugated to H:g, m Flagellin as a candidate vaccine for protection against invasive infection with S. enteritidis. Infect Immun 79(10):4240–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon R, Levine MM (2012) Glycoconjugate vaccine strategies for protection against invasive Salmonella infections. Hum Vaccin Immunother 8(4):494–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon S, Wang JY, Boyd MA, Tulapurkar ME, Ramachandran G, Tennant SM, Pasetti M, Galen JE, Levine MM (2013) Sustained protection in mice immunized with fractional doses of Salmonella enteritidis core and O polysaccharide-flagellin glycoconjugates. PLoS ONE 8(4):1–4

    Google Scholar 

  • Skinner JM, Indrawati L, Cannon J, Blue J, Winters M, Macnair J, Pujar N, Manger W, Zhang Y, Antonello J, Shover J, Caulfied M, Heinrichs JH (2011) Pre-clinical evaluation of a 15-valent pneumococcal conjugate vaccine (PCV15-CRM197) in an infant-rhesus monkey immunogenicity model. Vaccine 29:8870–8876. doi:10.1016/j.vaccine.2011.09.078

    CAS  PubMed  Google Scholar 

  • Skoff TH, Farley MM, Petit S, Craig AS, Schaffner W, Gershman K, Harrison LH, Lynfield R, Mohle-Boetani J, Zansky S, Albanese BA, Stefonek K, Zell ER, Jackson D, Thompson T, Schrag SJ (2009) Increasing burden of invasive group B streptococcal disease in nonpregnant adults, 1990-2007. Clin Infect Dis 49:85–92. doi:10.1086/599369

    PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    CAS  PubMed  Google Scholar 

  • Snellings NJ, Johnson EM, Kopecko DJ, Collins HH, Baron LS (1981) Genetic regulation of variable Vi antigen expression in a strain of Citrobacter freundii. J Bacteriol 145:1010–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snyder SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64:284–288

    CAS  PubMed  Google Scholar 

  • Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR (2009) Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9:611–616. doi:10.1016/S1473-3099(09)70178-1

    PubMed  Google Scholar 

  • Stollerman GH, Dale JB (2008) The importance of the group A Streptococcus capsule in the pathogenesis of human infections: a historical perspective. Clin Infect Dis 46:1038–1045. doi:10.1086/529194

    PubMed  Google Scholar 

  • Stone AL, Szu SC (1988) Application of optical properties of the Vi capsular polysaccharide for quantitation of the Vi antigen in vaccines for typhoid fever. J Clin Microbiol 26:719–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sturgess AW, Rush K, Charbonneau RJ, Lee JI, West DJ, Sitrin RD, Hennessy JP Jr (1999) Haemophilus influenzae type b conjugate vaccine stability: catalytic depolymerization of PRP in the presence of aluminium hydroxide. Vaccine 17:1169–1178

    CAS  PubMed  Google Scholar 

  • Suker J, Feavers IM, Corbel MJ, Jones C, Bolgiano B (2004) Control and lot release of meningococcal group C conjugate vaccines. Expert Rev Vaccines 3(5):533–540

    PubMed  Google Scholar 

  • Svennerholm L (1957) Quantitative estimation of sialic acid: II. a colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611

    Google Scholar 

  • Svennerholm AM, Holmgren J (1976) Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun 13:735–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sweeney JA, Sumner JS, Hennessey JP Jr (2000) Simultaneous evaluation of molecular size and antigenic stability of PNEUMOVAX 23, a multivalent pneumococcal polysaccharide vaccine. Dev Biol (Basel) 103:11–26

    CAS  Google Scholar 

  • Szu SC, Stone AL, Robbins JD, Schneerson R, Robbins JB (1987) Vi capsular polysaccharide protein conjugates for prevention of typhoid fever—preparation, characterization and immunogenicity in laboratory animals. J Exp Med 166:1510–1524

    CAS  PubMed  Google Scholar 

  • Talaga P, Bellamy L, Moreau M (2001) Quantitative determination of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharides by use of high-performance anion-exchange chromatography with pulsed amperometric detection. Vaccine 19:2987–2994

    CAS  PubMed  Google Scholar 

  • Talaga P, Vialle S, Moreau M (2002) Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine 20:2474–2484

    CAS  PubMed  Google Scholar 

  • Taylor DN, Trofa AC, Sadoff J, Chu C, Bryla D, Shiloach J, Cohen D, Ashkenazi S, Lerman Y, Egan W (1993) Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei (Plesiomonas shigelloides) bound to bacterial toxoids. Infect Immun 61(9):3678–3687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teodorović P, Slättegård R, Oscarson S (2006) Synthesis of stable C-phosphonate analogues of Neisseria meningitidis group A capsular polysaccharide structures using modified Mitsunobu reaction conditions. Org Biomol Chem 4(24):4485–4490

    PubMed  Google Scholar 

  • Tian J-H, Fuhrmann SR, Kluepfel-Stahl S, Carmen RJ, Ellingsworth L, Flyer DC (2012) A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine 30:4249–4258. doi:10.1016/j.vaccine.2012.04.045

    CAS  PubMed  Google Scholar 

  • Tomei M, Pacella G, Campa C, D’Ascenzi S (2009) Determination of size distributions of meningococcal oligosaccharides. P142. In: 8th Carbohydrate bioengineering meeting, Ischia, Italy, 10–13 May 2009

    Google Scholar 

  • Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P, Rappuoli R, Cassone A (2005) A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 202:597–606. doi:10.1084/jem.20050749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres-Sanchez MI, Zaccaria C, Buzzi B, Miglio G, Lombardi G, Polito L, Russo G, Lay L (2007) Synthesis and biological evaluation of phosphono analogues of capsular polysaccharide fragments from Neisseria meningitidis A. Chem-A Eur J 13(23):6623–6635

    CAS  Google Scholar 

  • Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70:1100–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai CM, Gu XX, Byrd RA (1994) Quantification of polysaccharide in Haemophilus influenzae type b conjugate and polysaccharide vaccines by high-performance anion-exchange chromatography with pulsed amperometric detection. Vaccine 12(8):700–706

    CAS  PubMed  Google Scholar 

  • Turek D, Sundgren A, Lahmann M, Oscarson S (2006) Synthesis of oligosaccharides corresponding to Vibrio cholerae O139 polysaccharide structures containing dideoxy sugars and a cyclic phosphate. Org Biomol Chem 4:1236–1241. doi:10.1039/b518125a

    CAS  PubMed  Google Scholar 

  • Turula V, Walters S, Singh S (2008) Arumugham R (2008) Automated colorimetric polysaccharide assays and includes preparing saccharide standards and diluted polysaccharide test samples. Wyeth, John, and Brother Ltd, USA (PCT Int Appl)

    Google Scholar 

  • Turula VE, Kim J, Michon F, Pankratz J, Zhang Y, Yoo C (2004) An integrity assay for a meningococcal type B conjugate vaccine. Anal Biochem 327(2):261–270

    CAS  PubMed  Google Scholar 

  • Van Damme P, Kafeja F, Anemona A, Basile V, Hilbert AK, De Coster I, Rondini S, Micoli F, Khan RMQ, Marchetti E, Ci Cioccio V, Saul A, Martin LB, Podda A (2011) Safety, immunogenicity and dose ranging of a new Vi-CRM197 conjugate vaccine against typhoid fever: randomized clinical testing in healthy adults. PLoS ONE 6(9):e25398. doi:10.1371/journal.pone.0025398

    PubMed Central  PubMed  Google Scholar 

  • Verez-Bencomo V, Fernández-Santana V, Hardy E, Toledo ME, Rodríguez MC, Heynngnezz L, Rodriguez A, Baly A, Herrera L, Izquierdo M, Villar A, Valdés Y, Cosme K, Deler ML, Montane M, Garcia E, Ramos A, Aguilar A, Medina E, Toraño G, Sosa I, Hernandez I, Martínez R, Muzachio A, Carmenates A, Costa L, Cardoso F, Campa C, Diaz M, Roy R (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305:522–525

    CAS  PubMed  Google Scholar 

  • Vinh H, Nhu NT, Nga TV, Duy PT, Campbell JI, Hoang NV, Boni MF, My PV, Parry C, Nga TT, Van Minh P, Thuy CT, Diep TS, Phuong le T, Chinh MT, Loan HT, Tham NT, Lanh MN, Mong BL, Anh VT, Bay PV, Chau NV, Farrar J, Baker S (2009) A changing picture of shigellosis in southern Vietnam: shifting species dominance, antimicrobial susceptibility and clinical presentation. BMC Infect Dis 9:204. doi:10.1186/1471-2334-9-204

    PubMed Central  PubMed  Google Scholar 

  • Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX (2006) Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 6(11):3400–3413

    CAS  PubMed  Google Scholar 

  • Von Hunolstein C, Parisi L, Bottaro D (2003) Simple and rapid technique for monitoring the quality of meningococcal polysaccharides by high performance size-exclusion chromatography. J Biochem Biophys Methods 56(1):291–296

    Google Scholar 

  • Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    CAS  PubMed  Google Scholar 

  • Wacker M, Wang L, Kowarik M, Dowd M, Lipowsky G, Faridmoayer A, Shields K, Park S, Alaimo C, Kelley KA, Braun M, Quebatte J, Gambillara V, Carranza P, Steffen M, Lee JC (2014) Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 209(10):1551–1561. doi:10.1093/infdis/jit800

    CAS  PubMed  Google Scholar 

  • Wade TK, Saksena R, Shiloach J, kovac P, Wade WF (2006) Immunogenicity of synthetic saccharide fragments of Vibrio cholerae O1 (Ogawa and Inaba) bound to exotoxin A. FEMS Immunol Med Microbiol 48:237–251. doi:10.1111/j.1574-695X.2006.00143.x

  • Wang LX, Costantino P, Geng Y, Zhang H (2014) Anti-carbohydrate HIV vaccine design. In: Pantophlet R (ed) HIV glycans in infection and immunity. Springer, New York

    Google Scholar 

  • Widmalm G (2013) A perspective on the primary and three-dimensional structures of carbohydrates. Carbohydr Res 378:123–132

    CAS  PubMed  Google Scholar 

  • Wieruszeski JM, Talaga P, Lippens G (2005) Development of a high-resolution magic-angle spinning nuclear magnetic resonance identity assay of the capsular polysaccharide from Haemophilus influenzae type b present in cetavlon precipitate. Anal Biochem 338(1):20–25

    CAS  PubMed  Google Scholar 

  • Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, Maguire RP, Blennow K, Lundmark J, Staufenbiel M, Orgogozo JM, Graf A (2012) Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 11(7):597–604. doi:10.1016/S1474-4422(12)70140-0

    CAS  PubMed  Google Scholar 

  • Wishart DS (2013) Characterization of biopharmaceuticals by NMR spectroscopy. Trends Analyt Chem 48:96–111

    CAS  Google Scholar 

  • Wu X, Bundle DR (2005) Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J Org Chem 70:7381–7388. doi:10.1021/jo051065t

    CAS  PubMed  Google Scholar 

  • Wu X, Lipinski T, Carrel FR, Bailey JJ, Bundle DR (2007) Synthesis and immunochemical studies on a Candida albicans cluster glycoconjugate vaccine. Org Biomol Chem 5(21):3477–3485. doi:10.1039/b709912f

    CAS  PubMed  Google Scholar 

  • Xie O, Pollard A, Mueller JE, Norheim G (2013) Emergence of serogroup X meningococcal disease in Africa: need for a vaccine. Vaccine 31(27):2852–2861. doi:10.1016/j.vaccine.2013.04.036

    PubMed  Google Scholar 

  • Xin H, Cartmell J, Bailey JJ, Dziadek S, Bundle DR, Cutler JE (2012) Self-adjuvanting glycopeptide conjugate vaccine against disseminated candidiasis. PLoS ONE 7:e35106. doi:10.1371/journal.pone.0035106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin H, Dziadek S, Bundle DR, Cutler JE (2008) Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci USA 105(36):13526–13531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Abeygunawardana C, Ng AS, Sturgess AW, Harmon BJ, Hennessey JP Jr (2005a) Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations. Anal Biochem 336:262–272

    CAS  PubMed  Google Scholar 

  • Xu Q, Klees J, Teyral J, Capen R, Huang M, Sturgess AW, Hennessey JP, Washabaugh M, Sitrin, Abeygunawardana C (2005b) Quantitative nuclear magnetic resonance analysis and characterization of the derivatized Haemophilus influenzae type b polysaccharide intermediate for PedvaxHIB. Anal Biochem 337(2):235–245. doi:10.1016/j.ab.2004.11.019

  • Yu Ip CC, Manam V, Hepler R, Hennessey JP Jr (1992) Carbohydrate composition analysis of bacterial polysaccharides: optimized acid hydrolysis conditions for HPAEC-PAD analysis. Anal Biochem 201:343–349

    Google Scholar 

  • Zandomeneghi G, Ilg K, Aebi M, Meier BH (2012) On-cell MAS NMR: physiological clues from living cells. J Am Chem Soc 134(42):17513–17519

    CAS  PubMed  Google Scholar 

  • Zartler ER, Porambo RJ, Anderson CL, Chen LH, Yu J, Nahm MH (2009) Structure of the capsular polysaccharide of pneumococcal serotype 11A reveals a novel acetylglycerol that is the structural basis for 11A subtypes. J Biol Chem 284(11):7318–7329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Lu YJ, Malley R (2013) Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci USA 110(33):13564–13569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zon G, Szu S, Egan W, Robbins JD, Robbins JB (1982) Hydrolytic stability of pneumococcal group 6 (type 6A and 6B) capsular polysaccharides. Infect Immun 37(1):89–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou W, Jennings HJ (2009) Preparation of glycoconjugate vaccines. In: Guo Z, Boons G-J (eds) Carbohydrate-based vaccines and immunotherapies. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

One of us (NR) would like to thank PATH and all the vaccine manufacturers who have made available samples of polysaccharides and glycoconjugate vaccines and for the many fruitful discussions, as well as the assistance of students Kirstin Anderson, Taigh Anderson, and Carey Pike with checking the manuscript and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Ravenscroft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ravenscroft, N., Costantino, P., Talaga, P., Rodriguez, R., Egan, W. (2015). Glycoconjugate Vaccines. In: Nunnally, B., Turula, V., Sitrin, R. (eds) Vaccine Analysis: Strategies, Principles, and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_8

Download citation

Publish with us

Policies and ethics