Skip to main content

Analytical Control Strategy of Bacterial Subunit Vaccines

  • Chapter
  • First Online:
Vaccine Analysis: Strategies, Principles, and Control

Abstract

The success of vaccines and their positive impact on public health cannot be overstated. Vaccines have evolved through history and can be classified into two broad groups by composition, which generally relates to their chronology of discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A Report of the National Biodefense Science Board (2010) Where are the countermeasures? Protecting America’s health from CBRN threats

    Google Scholar 

  • Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK (2011) Proteomics for development of vaccines. J Proteomics 74:2596–2616

    Article  CAS  PubMed  Google Scholar 

  • Aggerback H, Heron I (1991) Improvement of a vero cell assay to determine diphtheria antitoxin content in sera. Biologicals 19:71–76

    Article  Google Scholar 

  • Agrawal A, Pulendran B (2004) Anthrax lethal toxin: a weapon of multisystem destruction cell. Mol Life Sci 61:2859–2865

    Article  CAS  Google Scholar 

  • Al-Abri SS, Al-Jardani AK, Al-Hosni MS, Kurup PJ, Al-Busaidi S, Beeching NJ (2011) A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman. J Infect Public Health 4(4):180–186

    Article  PubMed  Google Scholar 

  • Albert MJ, Alam K, Rahman AS, Huda S, Sack RB (1994) Lack of cross protection against diarrhea due to Vibrio cholera O1 after oral immunization of rabbits with V. cholera O139 Bengal. J Infect Dis 169:709–710

    Google Scholar 

  • Alexander C, Rietschel ET (2001) Bacterial Lipopolysaccharide and innate immunity. Endotoxin Res 7:167–202

    CAS  Google Scholar 

  • Alonso MJ, Gupta RK, Min C, Siber GR, Langer R (1994) Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccines 12:299–306

    Article  CAS  Google Scholar 

  • Anh DD, Canh do G, Lopez AL, Thiem VD, Long PT, Son NH, Deen J, von Seidlein L, Carbis R, Han SH, Shin SH, Attridge S, Holmgren J, Clemens J (2007) Safety and immunogenicity of a reformulated Vietnamese bivalent killed, whole-cell, oral cholera vaccine in adults. Vaccine 25(6):1149–1155

    Google Scholar 

  • Arciniega JL, Corvette L, Hsu H, Lynn F, Romani T, Dobbelaer R (2011) Target alternative vaccine safety testing strategies for pertussis toxin. Procedia Vaccinol 5:248–260

    Article  Google Scholar 

  • Asaduzzaman M, Ryan ET, John M, Hang L, Khan A, Faruque AS, Taylor RK, Calderwood SB, Qadri F (2004) The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin a immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect Immun 72(8):4448–4454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bache C, Hoonakker M, Hendriksen C, Buchheit K-H, Spreitzer I, Montag T (2012) Workshop on animal free detection of pertussis toxin in vaccines-alternatives to the histamine sensitization test. Biologicals 40:309–311

    Article  PubMed  Google Scholar 

  • Benenson AS, Saad A, Paul M (1968a) Serological studies in cholera. I. Vibrio agglutinin response of cholera patients determined by a microtechnique. Bull World Health Organ. 38(2):267–276

    Google Scholar 

  • Benenson AS, Saad A, Mosley WH (1968b) Serological studies in cholera. 2. The vibriocidal antibody response of cholera patients determined by a microtechnique. Bull World Health Organ 38(2):277–285

    Google Scholar 

  • Benenson AS, Saad A, Mosley WH, Ahmed A (1968c) Serological studies in cholera. 3. Serum toxin neutralization–rise in titre in response to infection with Vibrio cholerae, and the level in the “normal” population of East Pakistan. Bull World Health Organ 38(2):287–295

    Google Scholar 

  • Bergfors E, Trollfors B, Inerot A (2003) Unexpectedly high incidence of persistent itching nodules and delayed hypersensitivity to aluminum in children after the use of adsorbed vaccines from a single manufacturer. Vaccine 22:64–69

    Article  PubMed  Google Scholar 

  • Berthold I, Pombo M-L, Wagner L, Arcinieg JL (2005) Immunogenicity in mice of anthrax recombinant protective antigen in the presence of aluminum adjuvants. Vaccine 23:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Bishop AL, Camilli A (2011) A. Vibrio cholera: lessons for mucosal vaccine design. Expert Rev Vaccine 10(1):79–94

    Article  CAS  Google Scholar 

  • Brady RA, Verma A, Meade BD, Burns DL (2010) Analysis of antibody responses to protective antigen-based anthrax vaccines through use of competitive assays. Clin Vaccine Immunol 9:1390–1397

    Article  CAS  Google Scholar 

  • Brey RN (2005) Molecular basis for improved anthrax vaccines. Adv Drug Deliv Rev 57(9):1266–1292

    Article  CAS  PubMed  Google Scholar 

  • CDC (2012) Epidemiology and prevention of vaccine-preventable diseases. The pink book: course textbook, 12th Edn. Appendix B vaccine excipient & media summary. http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/B/excipient-table-2.pdf

  • FDA (2010) Pathway to licensure for protective antigen-based anthrax vaccines for a post-exposure prophylaxis indication using the animal rule. http://www.fda.gov/advisorycommittees/committeesmeetingmaterials/bloodvaccinesandotherbiologics/vaccinesandrelated biologicalproductsadvisorycommittee/ucm197728.htm

  • Brown BK, Cox J, Gillis A, VanCott TC, Marovich M, Milazzo M, Antonille TS, Wieczorek L, McKee KT Jr, Metcalfe K, Mallory RM, Birx D, Polonis VR, Robb ML (2010) Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA) vaccine to prevent anthrax in adults. PLoS ONE 5(11):e13849

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burns DL, Kenimer JG, Manclark CR (1987) Role of the A subunit of pertussis toxin in alteration of Chinese hamster ovary cell morphology. Infect Immun 55:24–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tondella ML, Carlone, GM, Messonnier N, Quinn CP, Meade BD, Burns DL, Cherry JD, Guiso N, Hewlett EL, Edwards KM, Xing D, Giammanco A, Wirsing von Konig CH, Han L, Hueston L, Robbins JB, Powell M, Mink CM, Poolman JT, Hildreth SW, Lynn F, Morris A (2009) International Bordetella pertussis assay standardization and harmonization meeting report. Vaccine 27:803–814

    Google Scholar 

  • Carroll SF, Barbieri JT, Collier J (1988) Diphtheria toxin: purification and properties. In: Harshman S (ed) Methods in enzymology, vol 165. Academic press, New York, pp 68–76

    Google Scholar 

  • Chitnis DS, Sharma KD, Kamat RS (1982) Role of bacterial adhesion in the pathogenesis of cholera. J Med Microbiol 15(1):43–51

    Google Scholar 

  • Cholera Working Group ICDDR, Bangladesh (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholera O139 synonym Bengal. Lancet 342(8868):387–390

    Article  Google Scholar 

  • Clemens J, Jertborn M, Sack D, Stanton B, Holmgren J, Khan MR, Huda S (1986) Effect of neutralization of gastric acid on immune responses to oral B subunit killed whole-cell cholera vaccine. J Infect Dis 154:175–178

    Article  CAS  PubMed  Google Scholar 

  • CDC-NCID-3344, ClinicalTrials identifier NCT00119067. www.clinicaltrials.gov

  • Cookson BT, Cho H-L, Herwaldt LA, Goldman WE (1989) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57:2223–2229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coombes L, Stickings P, Tierney R, Rigsby P, Sesardic D (2009) Development and use of a novel in vitro assay for testing of diphtheria toxoid in combination vaccines. J Immunol Methods 350:142–149

    Article  CAS  PubMed  Google Scholar 

  • Coombes L, Tierney R, Rigsby P, Sesardic D, Stickings P (2012) In vitro antigen ELISA for quality control of tetanus vaccines. Biologicals 40:466–472

    Article  CAS  PubMed  Google Scholar 

  • Corbel MJ, Xing DKL (2004) Toxicity and potency evaluation of pertussis vaccines. Expert Rev Vaccines 3:89–101

    Article  CAS  PubMed  Google Scholar 

  • Corbel MJ, Xing DKL, Bolgiano B, Hockley DJ (1999) Approaches to the control of a cellular pertussis vaccines. Biologicals 27:133–141

    Article  CAS  PubMed  Google Scholar 

  • Cote CK, Welkos SL, Bozue J (2011) Key aspects of the molecular and cellular basis of inhalational anthrax. Microbes Infect 13(14–15):1146–1155

    Google Scholar 

  • Cote CK, Kaatz L, Reinhardt J, Bozue J, Tobery SA, Bassett AD, Sanz P, Darnell SC, Alem F, O’Brien AD, Welkos SL (2012) Characterization of a multi-component anthrax vaccine designed to target the initial stages of infection as well as toxaemia. J Med Microbiol 61:1380–1392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cumberland S (2009) An old enemy returns. Bull World Health Organ 87(2):85–86

    Article  Google Scholar 

  • Cyr T, Menzies AJ, Calver J, Whitehouse LW (2001) A quantitative analysis for the ADP-Ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products. Biologicals 29:81–95

    Article  CAS  PubMed  Google Scholar 

  • Dahneke BE (1983) Measurement of suspended particles by quasielastic light scattering. Wiley, New York, p 570

    Google Scholar 

  • Dakterzada F, Mobazer AM, Roudkenar M, Forouzandeh M (2012) Production of pentameric cholera toxin B subunit in Escherichia coli. Avicenna J Med Biotechnol 4(2):89–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deen JL, Von Seidlein L, Sur D, Agtini M, Lucas MES, Lopez AL, Kim DR, Ali M, Clemens JD (2008) The high burden of cholera in children: comparison of incidence from endemic areas in Asia and Africa. PLoS Negl Trop Dis 2(2):e173

    Article  PubMed Central  PubMed  Google Scholar 

  • Del Giudice G, Rappuoli R (1999) Molecular approaches for safer and stronger vaccines. Schweiz Med Wochenschr 129(46):1744–1748

    PubMed  Google Scholar 

  • Del Giudice G, Pizza M, Rappuoli R, (1998) Molecular basis of vaccination. Mol Aspects Med 19(1):1–70

    Google Scholar 

  • D’Souza AJ, Mar KD, Huang J, Majumdar S, Ford BM, Dyas B, Ulrich RG, Sullivan VJ (2013) Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J Pharm Sci 102(2):454–461

    Article  PubMed  CAS  Google Scholar 

  • Dukoral Package Leaflet (2013) Information for the user. Crucell Sweden AB, 105 21 Stockholm, Sweden

    Google Scholar 

  • EMEA (2005) Scientific discussion module for the approval of Dukoral

    Google Scholar 

  • European Pharmacopoeia (2014) 8.2 edition

    Google Scholar 

  • Farchaus JW, Ribot WJ, Jendrek S, Little SF (1998) Fermentation, purification, and characterization of protective antigen from a recombinant, a virulent strain of Bacillus anthracis. Appl Environ Microbiol 64(3):982–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • FDA (2002) Approval of biological products when human efficacy studies are not ethical or feasible. 21 CFR 601 subpart H (for biological products) 21 CFR 314 subpart I for new drugs (for drugs)

    Google Scholar 

  • FDA (2012) BioThrax®-Package Insert. http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/UCM074923.pdf

  • Feavers I, Griffiths E, Baca-Estrada M, Knezevic I, Zhou T (2012) WHO/Health Canada meeting on regulatory considerations for evaluation and licensing of new meningococcal group B vaccines, Ottawa Canada 3–4 October 2011. Biologicals 40(6):507–516

    Article  PubMed  Google Scholar 

  • Federal Register (2005) Biological products: bacterial vaccines and toxoids; implementation of efficacy review, vol 70, pp 75018–75028

    Google Scholar 

  • Federal Register (2009) Draft guidance for industry on animal models–essential elements to address efficacy under the animal rule. Notices 74(12):3610–3611

    Google Scholar 

  • Federal Register (2014) Product development under the animal rule, revised draft guidance for industry; availability, vol 79, no 106, pp 31950–31951

    Google Scholar 

  • Feld GK, Thoren KL, Kintzer AF, Sterling HJ, Tang LI, Greenberg SG, Williams ER, Krantz BA (2010) Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers. Nat Struct Mol Biol 17(11):1383–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari G, Garaguso I, Adu-Bobie J, Doro F, Taddei AR, Biolchi A, Brunelli B, Giuliani MM, Pizza M, Norais N, Grandi G (2006) Proteomics 6:1856–1866

    Google Scholar 

  • Frasch CE, van Alphen L, Holst J, Poolman J, Rosenqvist E (2001) Preparation of outer membrane protein vaccines against meningococcal disease. In: Pollard AJ, Maiden MCJ (eds) Methods in molecular medicine, vol 66. Meningococcal disease protocols. Humana Press Inc, Totowa

    Google Scholar 

  • Fredriksen JH, Rosenqvist E, Wedege E, Bryn K, Bjune G, Frøholm LO, Lindbak AK, Møgster B, Namork E, Rye U (1991) NIPH Ann 14(2):67–79 (discussion 79–80)

    Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126

    CAS  PubMed  Google Scholar 

  • Friedlander AM, Little SF (2009) Advances in the development of next-generation anthrax vaccines. Vaccine 27(Suppl 4):D28–D32

    Article  CAS  PubMed  Google Scholar 

  • Gaines-Das R, Horiuchi Y, Zhang SM, Newland P, Kim Y, Corbel M, Xing D (2009) Modified intra-cerebral challenge assay for acellular pertussis vaccines: comparisons among whole cell and acellular vaccines. Vaccine 27:6824–6832

    Article  CAS  PubMed  Google Scholar 

  • Galazka AM (1993) The immunological basis for immunization series, module 3: tetanus. Global programme for vaccines and immunization expanded programme on immunization, WHO, Geneva, Switzerland

    Google Scholar 

  • Ganesan A, Watkinson A, Moore BD (2012) Biophysical characterization of thermal-induced precipitates of recombinant anthrax protective antigen: evidence for kinetically trapped unfolding domains in solid-state. Eur J Pharm Biopharm 82(3):475–484

    Article  CAS  PubMed  Google Scholar 

  • Gentschev I, Dietrich G, Spreng S, Kolb-Mäurer A, Brinkmann V, Grode L, Hess J, Kaufmann SH, Goebel W (2001) Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine 19:2621–2628

    Article  CAS  PubMed  Google Scholar 

  • Glenny AT, Hopkins BE (1923) Diphtheria toxoid as an immunising agent. Br J Exp Pathol 4:283–288

    Google Scholar 

  • Gu M, Hine PM, Jackson WJ, Giri L, Nabors GS (2007) Increased potency of BioThrax® anthrax vaccine with the addition of the C-class CpG oligonucleotide adjuvant CPG 10109. Vaccine 25:526–534

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Waheed SM, Bhatnagar R (1999) Expression and purification of the recombinant protective antigen of Bacillus anthracis. Protein Expr Purif 16(3):369–376

    Article  CAS  PubMed  Google Scholar 

  • Gwinn W, Zhang M, Mon S, Sampey D, Zukauskas D, Kassebaum C, Zmuda JF, Tsai A, Laird MW (2006) Scalable purification of Bacillus anthracis protective antigen from Escherichia coli. Protein Expr Purif 45(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Hambleton P, Carman JA, Melling J (1984) Anthrax: the disease in relation to vaccines 2:125–132

    Google Scholar 

  • Hammamieh R, Ribot WJ, Abshire TG, Jett M, Ezzell J (2008) Activity of the Bacillus anthracis 20 kDa protective antigen component. BMC Infect Dis 8:124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Proguiske-Fox A, Handfield M, Ryan ET, Calderwood SB (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci USA 100(14):8508–8513

    Article  PubMed Central  PubMed  Google Scholar 

  • Hering D, Thompson W, Hewetson J, Little S, Norris S, Pace-Templeton J (2004) Validation of the anthrax lethal toxin neutralization assay. Biologicals 32:17–27

    Article  CAS  PubMed  Google Scholar 

  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168(4):1487–1492

    Google Scholar 

  • Hewlett EL, Sauer KT, Myers GA, Cowell JL, Guerrant RL (1983) Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect immun 40:1198–1203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilleman MR (2000) Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 18:1436–1447

    Article  CAS  PubMed  Google Scholar 

  • Thiem VD, Deen JL, Von Seidlein L, Canh do G, Anh DD, Park JK, Ali M, Danovaro-Holliday MC, Son ND, Hoa NT, Holmgren J, Clemens JD (2006) Long-term effectiveness against cholera of oral killed whole-cell vaccine produced in Vietnam. Vaccine 24(20):4297–4303

    Google Scholar 

  • Holst J, Feiring B, Naess LM (2005) The concept of “tailor-made”, protein-based, outer membrane vesicle vaccines against meningococcal disease. Vaccine 23:2202–2205

    Article  CAS  PubMed  Google Scholar 

  • Holst J, Martin D, Arnold R, Huergo CC, Oster P, O’Hallahan J, Rosenqvist E (2009) Properties and clinical performance of vaccines containing OMV from Neisseria meningitidis. Vaccine 27(Suppl 2):B3–B12

    Article  CAS  PubMed  Google Scholar 

  • Howitz M, Grove Krause T, Brunbjerg Simonsen J, Hoffmann S, Frisch M, Munk Nielsen N, Robbins J, Schneerson R, Molbak K, Miller M (2007) Lack of association between group B meningococcal disease and autoimmune disease. Clin Infect Dis 45:1327–1334

    Article  PubMed  Google Scholar 

  • Hu L, Joshi SB, Andra KK, Thakkar SV, Volkin DB, Bann JG, Middaugh CR (2012) Comparison of the structural stability and dynamic properties of recombinant anthrax protective antigen and its 2-fluorohistidine-labeled analogue. J Pharm Sci 101(11):4118–4128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isbrucker R, Arciniega J, McFarland R et al (2014) Report on the international workshop on alternatives to the murine histamine sensitization test (HIST) for acellular pertussis vaccines: state of the science and the path forward. Biologicals 42:114–122

    Article  PubMed  Google Scholar 

  • Ivins B, Fellows P, Pitt L, Estep J, Farchaus J, Friedlander A, Gibbs P (1995) Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol Bacillus anthracis spore challenge in guinea pigs. Vaccine 13(18):1779–1784

    Google Scholar 

  • Ivins BE, Pitt ML, Fellows PF, Farchaus JW, Benner GE, Waag DM, Little SF, Anderson GW Jr, Gibbs PH, Friedlander AM (1998) Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in rhesus macaques. Vaccine 16(11–12):1141–1148

    Google Scholar 

  • Jackson SG, Goodbrand RB, Ahmed R, Kasatiya S (1995) Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21(2):103–105

    Article  CAS  PubMed  Google Scholar 

  • Jendrek S, Little SF, Hem S, Mitra G, Giardina S (2003) Evaluation of the compatibility of a second generation recombinant anthrax vaccine with aluminum-containing adjuvants. Vaccine 21:3011–3018

    Article  CAS  PubMed  Google Scholar 

  • Jensen SE, Engelhart Illigen KE, Badsberg JH, Haslov KR (2012) Specificity and detection limit of a dermal temperature histamine sensitization test for absence of residual pertussis toxin in vaccines. Vaccine 40:36–40

    Google Scholar 

  • Jertborn M, Svennerholm AM, Holmgren J (1992) Safety and immunogenicity of an oral recombinant cholera B subunit-whole cell vaccine in Swedish volunteers. Vaccine 10(2):130–132

    Article  CAS  PubMed  Google Scholar 

  • Jertborn M, Svennerholm AM, Holmgren J (1993) Evaluation of different immunization schedules for oral cholera B subunit-whole cell vaccine in Swedish volunteers. Vaccine 11:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Joellenbeck LM, Zwanziger L, Durch JS, Strom BL (eds) (2002) The anthrax vaccine: is it safe? Does it work? National Academy Press, Washington DC

    Google Scholar 

  • Kataoka M, Toyoizumi H, Yamamoto A, Ochiai M, Horiuchi Y (2002) CHO cell clustering does not correlate with in vivo histamine-sensitization when measuring residual activity of aldehyde-treated PT. Biologicals 30:297–302

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Bhatnagar R (2011) Recent progress in the development of anthrax vaccines. Recent Pat Biotechnol 5(3):148–159

    Article  CAS  PubMed  Google Scholar 

  • Keller JE (2011) Overview of currently approved serological methods with a focus on diphtheria and tetanus toxoid potency testing. Procedia Vaccinol 5:192–199

    Google Scholar 

  • Khatami A, Pollard J (2010) The epidemiology of meningococcal disease and the impact of vaccines. Expert Rev Vaccine 9(3):285–298

    Google Scholar 

  • Kirn TJ, Taylor RK (2005) TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect Immun 73(8):4461–4470

    Google Scholar 

  • Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438(7069):863–866

    Google Scholar 

  • Knezevic I, Baca-Estrada M, Xing DK, Lei D (2008) WHO working group meeting on standardization of acellular pertussis vaccines: potency assay. Vaccine 26:3960–3968

    Article  CAS  PubMed  Google Scholar 

  • Laird MW, Zukauskas D, Johnson K, Sampey GC, Henrik Olsen H, Garcia A, Karwoski JD, Cooksey BA, Choi GH, Askins J, Tsai A, Pierre J, Gwinn W (2004) Production and purification of Bacillus anthracis protective antigen from Escherichia coli. Protein Expr Purif 38:145–152

    Article  CAS  PubMed  Google Scholar 

  • Lang J, Wood SC (1999) Development of orphan vaccines: an industry perspective. Emerg Infect Dis 5(6):749–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larocque RC, Krastins B, Harris JB, Lebrun LM, Parker KC, Chase M, Ryan ET, Qadri F, Sarracino D, Calderwood SB (2008) Proteomic analysis of Vibrio cholera in human stool. Infect Immun 76(9):4145–4151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leppla SH, Robbins JB, Schneerson R, Shiloach J (2002) Development of an improved vaccine for anthrax. J Clin Invest 109:141–144

    Article  Google Scholar 

  • Levine MM, Lagos R (2004) Vaccination in historical perspective. In: Levine MM (eds) New generation vaccines, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Liljeqvist S, Ståhl S (1999a) Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 73:1–33

    Article  CAS  PubMed  Google Scholar 

  • Liljeqvist S, Ståhl S (1999b) Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 73:1–33

    Article  CAS  PubMed  Google Scholar 

  • Little SF, Ivins BE, Fellows PF, Pitt MLM, Norris SLW, Andrews GP (2004a) Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine 22:422–430

    Article  CAS  PubMed  Google Scholar 

  • Little SF, Webster WM, Ivins BE, Fellows PF, Norris SL, Andrews GP (2004b) Development of an in vitro-based potency assay for anthrax vaccine. Vaccine 22(21–22):2843–2852

    Article  CAS  PubMed  Google Scholar 

  • Little SF, Ivins BE, Webster WM, Fellows PF, Pitt ML, Norris SL, Andrews GP (2006) Duration of protection of rabbits after vaccination with Bacillus anthracis recombinant protective antigen vaccine. Vaccine 24(14):2530–2536

    Article  CAS  PubMed  Google Scholar 

  • Little SF, Ivins BE, Webster WM, Norris SL, Andrews GP (2007) Effect of aluminum hydroxide adjuvant and formaldehyde in the formulation of rPA anthrax vaccine. Vaccine 25(15):2771–2777

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang Y, Moayeri M, Liu J, Crown D, Fattah RJ, Wein AN, Yu ZX, Finkel T, Leppla SH (2013) Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 501(7465):63–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez AL, Clemens JD, Deen J, Jodar L (2008) Cholera vaccines for the developing world. Hum Vaccin 4(2):165–169

    Article  PubMed  Google Scholar 

  • Lowe CR, Pearson JC (1984) Affinity chromatography on immobilized dyes. In: Jakoby WB (ed) Methods in enzymology 104:97–113

    Google Scholar 

  • Lyngby J, Olsen LH, Eidem T, Lundanes E, Jantzen E (2002) Quantification of lipopolysaccharide in outer membrane vesicle vaccines against meningococcal disease. High-performance liquid chromatography determination of the constituent 3-hydroxy-lauric acid. Biologicals 30:7–13

    Article  CAS  PubMed  Google Scholar 

  • Mahalanabis D, Lopez AL, Sur D, Deen J, Manna B, Kanungo S, von Seidlein L, Carbis R, Han SH, Shin SH, Attridge S, Rao R, Holmgren J, Clemens J, Bhattacharya SK (2008) A randomized, placebo controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS One 3(6):e2323. doi:10.1371/journal.pone.0002323

    Article  PubMed Central  PubMed  Google Scholar 

  • Matheny J, Mair M, Mulcahy A, Smith BT (2007) Incentives for biodefense countermeasure development Biosecurity and Bioterrorism, vol 5, no 3. © Mary Ann Liebert, Inc

    Google Scholar 

  • May JC, Progar JJ, Chin R (1984) The aluminum content of biological products containing aluminum adjuvants: determination by atomic absorption spectrometry. J Biol Stand 12:175–183

    Article  CAS  PubMed  Google Scholar 

  • McDonald C, Inohara N, Nuñez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280:20177–20180

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Sarfaty S, Akker FVD, L’Hoir C, Martial JA, Hol WG (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GMl pentasaccharide. Protein Sci 3:166–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merritt EA, Kuhn P, Sarfaty S, Erbe JL, Holmes RK, Hol WG (1998) The 1.25 Å resolution refinement of the cholera toxin b-pentamer: evidence of peptide backbone strain at the receptor-binding site. J Mol Biol 282:1043–1059

    Article  CAS  PubMed  Google Scholar 

  • Metz B, Jiskoot W, Hennink WE, Crommelin DJA, Kersten GFA (2003) Physicochemical and immunochemical techniques predict the quality of diphtheria toxoid vaccines. Vaccines 22:156–167

    Article  CAS  Google Scholar 

  • Miller J, McBride BW, Manchee RJ, Moore P, Baillie LW (1998) Production and purification of recombinant protective antigen and protective efficacy against Bacillus anthracis. Lett Appl Microbiol 26(1):56–60

    Google Scholar 

  • Mosley WH, Ahmad S, Benenson AS, Ahmed A (1968) The relationship of vibriocidal antibody titre to susceptibility to cholera in family contacts of cholera patients. Bull World Health Organ 38(5):777–785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosley WH, Aziz KM, Rahman AS, Chowdhury AK, Ahmed A (1973) Field trials of monovalent Ogawa and Inaba cholera vaccines in rural Bangladesh: three years of observation. Bull World Health Organ 49(4):381–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical 55:416–421

    CAS  Google Scholar 

  • Newman MJ, Powell MF (1995) Immunological and formulation design considerations for subunit vaccines. In: Newman MJ, Powell MF (ed) Vaccine design: the subunit and adjuvant approach. Plenum Press, New York

    Google Scholar 

  • NIH (1947) Minimum requirements: diphtheria toxoid, 4th edn. US Department of Health, Education Welfare, Bethesda

    Google Scholar 

  • NIH (1952) Minimum requirements: tetanus toxoid, 4th edn. US Department of Health, Education Welfare, Bethesda

    Google Scholar 

  • NIH (1953) Minimum requirements: tetanus and diphtheria toxoids combined precipitated adsorbed (for adult use). US Department of Health, Education Welfare, Bethesda

    Google Scholar 

  • Ochiai M, Yamamoto A, Kataoka M, Toyoizumi H, Arakawa Y, Horiuchi Y (2007) Highly sensitive histamine-sensitization test for residual activity of pertussis toxin in acellular pertussis vaccine. Biologicals 35:259–264

    Article  CAS  PubMed  Google Scholar 

  • Orenstein WA, Paulson JA, Brady MT, Cooper LZ, Seib K (2013) Global vaccination recommendations and thimerosal. Pediatrics 131:149–150

    Article  PubMed  Google Scholar 

  • Pappenheimer AM Jr (1984) Diphtheria. In: Germanier R (ed) Bacterial vaccines. Academic Press Inc, New York

    Google Scholar 

  • Parreiras PM, Sirota LA, Wagner LD, Menzies SL, Arciniega JL (2009) Comparability of ELISA and toxin neutralization to measure immunogenicity of protective antigen in mice, as part of a potency test for anthrax vaccines. Vaccine 27(33):4537–4542

    Article  CAS  PubMed  Google Scholar 

  • Pavliak V, Brisson JR, Michon F, Jennings HJ (1993) Structure of the sialylated L3 lipopolysaccharide of Neisseria meningitidis. J Biol Chem 268:14146–14152

    CAS  PubMed  Google Scholar 

  • Peachman KK, Li Q, Matyas GR, Shivachandra SB, Lovchik J, Lyons RC, Alving CR, Rao VB, Rao M (2012) Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clin Vaccine Immunol 19(1):11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peltola H, Siitonen A, Kataja MJ, Kyronseppa H, Simula I, Mattila L, Oksanen P, Cadoz M (1991) Prevention of travellers’ diarrhoea by oral B-subunit/whole-cell cholera vaccine. Lancet 338:1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Pierce NF, Kaper JB, Mekalanos JJ, Cray WC Jr (1985) Role of cholera toxin in enteric colonization by Vibrio cholerae O1 in rabbits. Infect Immun 50(3):813–816

    Google Scholar 

  • Pitt ML, Little SF, Ivins BE, Fellows P, Barth J, Hewetson J, Gibbs P, Dertzbaugh M, Friedlander AM (2001) In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19:4768–4773

    Article  CAS  PubMed  Google Scholar 

  • Plotkin SA, Orenstein WA, Offit PA (2008) Vaccines, 5th edn. Licensed Vaccines, Section 2, pp 111–126

    Google Scholar 

  • Poolman J, OHallander H (2007) Acellular pertussis vaccines and the role of pertactin and fimbriae. Expert Rev Vaccines 6:47–56

    Article  CAS  PubMed  Google Scholar 

  • Powell BS, Enama JT, Ribot WJ, Webster W, Little S, Hoover T, Adamovicz JJ, Andrews GP (2007) Multiple asparagine deamidation of Bacillus anthracis protective antigen causes charge isoforms whose complexity correlates with reduced biological activity. Proteins Struct Funct Bioinf 68:458–479

    Article  CAS  Google Scholar 

  • Rahman MM, Kolli VS, Kahler CM, Shih G, Stephens DS, Carlson RW (2000) The membrane phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae as characterized by fast atom bombardment mass spectrometry. Microbiology 146:1901–1911

    CAS  PubMed  Google Scholar 

  • Ramamurthy T, Garg S, Sharma R, Bhattacharya SK, Nair GB, Shimada T, Takeda T, Karasawa T, Kurazano H, Pal A, Takeda Y (1993) Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and Eastern India. Lancet 341(8846):703–704

    Article  CAS  PubMed  Google Scholar 

  • Ramirez DM, Leppla SH, Schneerson R, Shiloach J (2002) Production, recovery and immunogenicity of the protective antigen from a recombinant strain of Bacillus anthracis. J Ind Microbiol Biotechnol 28(4):232–238

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R (2007) Bridging the knowledge gaps in vaccine design. Nat Biotechnol 25(12):1361–1366

    Google Scholar 

  • Rhie GE, Park YM, Han JS, Yu JY, Seong WK, Oh HB (2005) Efficacy of non-toxic deletion mutants of protective antigen from Bacillus anthracis. FEMS Immunol Med Microbiol 45(2):341–347

    Article  CAS  PubMed  Google Scholar 

  • Ribot WJ, Powell BS, Ivins BE, Little SF, Johnson WM, Hoover TA, Norris SL, Adamovicz JJ, Friedlander AM, Andrews GP (2006) Comparative vaccine efficacy of different isoforms of recombinant protective antigen against Bacillus anthracis spore challenge in rabbits. Vaccine 24:3469–3476

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–233

    Article  CAS  PubMed  Google Scholar 

  • Sanchez J, Holmgren J (1989) Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development. Proc Natl Acad Sci USA 86:481–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez J, Johansson S, Löwenadler B, Svennerholm AM, Holmgren J (1990) Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination. Res Microbiol 141(7–8):971–979

    Google Scholar 

  • Scerpella EG, Sanchez JL, Mathewson III JJ, Torres-Cordero JV, Sadoff JC, Svennerholm AM, DuPont HL, Taylor DN, Ericsson CD (1995) Safety Immunogenicity, and protective efficacy of the whole-cell/recombinant B subunit (WC/rBS) oral cholera vaccine against travelers’ diarrhea. J Travel Med 2:22–27

    Google Scholar 

  • Sekura RD (1988) Novel method of preparing toxoid by oxidation and metal ions. US Patent 4762710

    Google Scholar 

  • Sekura RD, Fish F, Manclark CR, Meade B, Zhang Y-L (1983) Pertussis toxin: affinity purification of a new ADP-Ribosyl transferase. J Biol Chem 258:14647–14651

    CAS  PubMed  Google Scholar 

  • Sengupta DK, Sengupta TK, Ghose AC (1992) Antibodies to outer membrane proteins of Vibrio cholerae induce protection by inhibition of intestinal colonization of vibrios. FEMS Microbiol Immunol 4(5):261–266

    Article  CAS  PubMed  Google Scholar 

  • Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R (2012) The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30S:B87–B97

    Article  CAS  Google Scholar 

  • Shin S, Desai SN, Shah BK, Clemens JD (2011) Oral vaccines against cholera. Clin Infect Dis 52(11):1343–1349

    Article  PubMed  Google Scholar 

  • Shrivastaw KP, Singh S (1995a) A new method for spectrophotometric determination of formaldehyde in biologicals. Biologicals 23:47–53

    Article  CAS  PubMed  Google Scholar 

  • Shrivastaw KP, Singh S (1995b) A new method for spectrophotometric determination of thimerosal in biologicals. Biologicals 23:65–69

    Article  CAS  PubMed  Google Scholar 

  • Skibinski DA, Baudner BC, Singh M, O’Hagan DT (2011) Combination vaccines. J Glob Infect Dis 3(1):63–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Soliakov A, Kelly IF, Lakey JH, Watkinson A (2012) Anthrax sub-unit vaccine: the structural consequences of binding rPA83 to Alhydrogel®. Eur J Pharm Biopharm 80(1):25–32

    Google Scholar 

  • Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56(4):622–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sperandio V, Girón JA, Silveira WD, Kaper JB (1995) The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun 63(11):4433–4438

    Google Scholar 

  • Stein DM, Robbins J, Miller MA, Lin FY, Schneerson R (2006) Are antibodies to the capsular polysaccharide of Neisseria meningitidis group B and Escherichia coli K1 associated with immunopathology? Vaccine 24:221–228

    Article  CAS  PubMed  Google Scholar 

  • Stickings P, Rigsby P, Coombes L, Malik K, Matejtschuk P, Sesardic D (2010) Collaborative study for the calibration of a replacement international standard for diphtheria toxoid adsorbed. Biologicals 38:529–538

    Article  PubMed  Google Scholar 

  • Stickings P, Rigsby P, Coombes L, Hockley J, Tierney R, Sesardic D (2011) Animal refinement and reduction: alternative approaches for potency testing of diphtheria and tetanus vaccines. Procedia Vaccinol 5:200–212

    Article  Google Scholar 

  • Tamura M, Nogimori K, Murai S, Yajima M, Ito K, Katada T, Ui M, Ishii S (1982) Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522

    Article  CAS  PubMed  Google Scholar 

  • Tani C, Stella M, Donnarumma D, Biagini M, Parente P, Vadi A, Magagnoli C, Costantino P, Rigat F, Norais N (2014) Quantification by LC–MSE of outer membrane vesicle proteins of the Bexsero® vaccine. Vaccine 32:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Nat Acad Sci USA 84(9):2833–2837

    Google Scholar 

  • Tayot J-L, Holmgren J, Svennerholm L, Lindblad M, Tardy M (1981) Eur J Biochem 113:249–258

    Google Scholar 

  • Tierney R, Stickings P, Hockley J, Rigsby P, Iwaki M, Sesardic D (2011) Collaborative study for the calibration of a replacement international standard for tetanus toxoid adsorbed. Biologicals 39:404–416

    Article  CAS  PubMed  Google Scholar 

  • Trach DD, Clemens JD, Ke NT, Thuy HT, Son ND, Canh DG, Hang PV, Rao MR (1997) Field trial of a locally produced, killed, oral cholera vaccine in Vietnam. Lancet 349(9047):231–235

    Article  CAS  PubMed  Google Scholar 

  • Tsai CM, Frasch CE, Rivera E, Hochstein HD (1989) Measurements of LPS (endotoxin) in meningococcal protein and polysaccharide preparations for vaccine usage. J Biol Stand 17:249–258

    Article  CAS  PubMed  Google Scholar 

  • Tummala M, Hu P, Lee S-M, Robinson A, Chess E (2008) Characterization of pertussis toxin by LC-MS/MS. Anal Biochem 374:16–24

    Article  CAS  PubMed  Google Scholar 

  • Tummala M, Lee S-M, Chess E, Hu P (2010) Characterization of pertussis toxoid by two-dimensional liquid chromatography-tandem mass spectrometry. Anal Biochem 401:295–302

    Article  CAS  PubMed  Google Scholar 

  • Tummala M, Chacon A, Chess E, Lee S-M, Hu P (2013) Pertussis toxoid structure: a collaboration and comparison of 2D-LC-MS/MS, UPLC-MSE, and CapLC-MALDI-MS/MS. Anal Biochem 437:40–42

    Article  CAS  PubMed  Google Scholar 

  • Turnbull PCB (1991) Anthrax vaccines: past present and future. Vaccine 9:533–539

    Article  CAS  PubMed  Google Scholar 

  • Unnikrishnan M, Rappuoli R, Serruto D (2012) Recombinant bacterial vaccines. Curr Opin Immunol 24:337–342

    Google Scholar 

  • Use of Anthrax Vaccine in the United States (2000) Recommendations of the advisory committee on immunization practices (ACIP). MMWR Morb Mort Wkly Rep 49(RR-15):1–17

    Google Scholar 

  • Verma A, McNichol B, Domínguez-Castillo R, Amador-Molina JC, Arciniega JL, Reiter K, Meade BD, Ngundi MM, Stibitz S, Burns DL (2013) Use of site-directed mutagenesis to model the effects of spontaneous deamidation on the immunogenicity of Bacillus anthracis protective antigen. Infect Immun 81(1):278–284

    Google Scholar 

  • NIH Source. http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=8325Taxonomy. Vibrio cholera, proteins: 5, chemicals: 6 modified: 2011/09/10 00:00, MMDB ID: 8325 PDB ID: 3CHB

  • Vipond C, Suker J, Jones C, Tang C, Feavers I, Wheeler J (2006) Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 6:3400–3413

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Blanot D, De Pedro M (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  • Wagner L, Verma A, Meade BD, Reiter K, Narum DL, Brady RA, Little SF, Burns DL (2012) Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant. Clin Vaccine Immunol 19(9):1465–1473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1994) Vibrio cholera O139 specific gene sequences. Lancet 343(8909):1366

    Article  CAS  PubMed  Google Scholar 

  • Wassil J, McIntosh E, Serruto D, DeTora L, Bröker M, Kimura A (2012) Clin Invest 2(5):503–517

    Google Scholar 

  • Watkinson A, Soliakov A, Ganesan A, Hirst K, Lebutt C, Fleetwood K, Fusco PC, Fuerst TR, Lakey JH (2013) Increasing the potency of an alhydrogel formulated vaccine by minimising antigen–adjuvant interactions. Clin Vaccine Immunol 20(11):1659–1668

    Google Scholar 

  • Weil AA, Arifuzzaman M, Bhuiyan TR, LaRocque RC, Harris AM, Kendall EA, Hossain A, Tarique AA, Sheikh A, Chowdhury F, Khan Al, Murshed F, Parker KC, Banerjee KK, Ryan ET, Harris JB, Qadri F, Calderwood SB (2009) Memory T cell responses to Vibrio cholera O1 infection. Infect Immun 77:5090–5096

    Google Scholar 

  • WHO (1965) BLG/UNDP 77.1

    Google Scholar 

  • WHO (1990) Requirements for diphtheria, tetanus, pertussis and combined vaccines. World Health Organ Tech Rep Ser 800:87–151

    Google Scholar 

  • WHO (1992) Annex 1, Good manufacturing practices for biological products (WHO Tech Rep Series No. 822)

    Google Scholar 

  • WHO (1998) Annex 2, guidelines for the production and control of the acellular pertussis component of monovalent or combined vaccines. WHO Tech Rep Ser 878:57–70

    Google Scholar 

  • WHO (2009) Cholera: global surveillance summary, 2008. Wkly Epidemiol Rec 84:309–324

    Google Scholar 

  • WHO (2013a) Recommendations to assure the quality, safety and efficacy of acellular pertussis vaccines. WHO Expert committtee on biological standaradization. Sixty-second report, Geneva, WHO Technical report series, No 979, Annex 4, pp 189–235

    Google Scholar 

  • WHO (2013b) Manual for quality control of diphtheria, tetanus and pertussis vaccines

    Google Scholar 

  • WHO (2014a) Recommendations to assure the quality, safety and efficacy of tetanus vaccines (adsorbed). WHO Expert committtee on biological standaradization. Sixty-third report, Geneva, WHO technical report series, No 980, Annex 5, pp 271–333

    Google Scholar 

  • WHO (2014b) Recommendations to assure the quality, safety and efficacy of diphtheria vaccines (adsorbed). WHO expert committtee on biological standaradization. Sixty-third report, Geneva, WHO technical report series, No 980, Annex 4, pp 211–270

    Google Scholar 

  • Williamson ED, Hodgson I, Walker NJ, Topping AW, Duchars MG, Mott JM, Estep J, Lebutt C, Flick-Smith HC, Jones HE, Li H, Quinn CP (2005) Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. Infect Immun 73(9):5978–5987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wirz M, Gentilli G, Collotti C (1990) Tetanus vaccine: present status. In: Mizrahi A (ed) Bacterial vaccines, Alan R. Liss, Inc. New York

    Google Scholar 

  • Wistreich GA, Anthrax: a bioterroist weapon. Copyright © 2001 By RC Educational Consulting Services, Inc

    Google Scholar 

  • Wolfe DN, Florence W, Bryant P (2013) Current biodefense vaccine programs and challenges. Hum Vaccine Immunotherapeutics 9(7):1591–1597

    Google Scholar 

  • World Health Organization (1991) WHO report on cholera: ancient scourge on the rise. WHO announces global plan for cholera control. WHO Feature (154):1–3

    Google Scholar 

  • World Health Organization (2000) WHO report on global surveillance of epidemic-prone infectious disease, pp 39–54. http://www.who.int/csr/resources/publications/surveillance/WHO_report_Infectious_Disease.Pdf. Accessed 2013

  • World Health Organization (2004) Guidelines for the production and control of inactivated oral cholera vaccines. WHO technical report series 924, Annex 3, Geneva. http://www.who.int/biologicals/publications/trs/areas/vaccines/cholera/en/index.html

  • World Health Organization (2010) Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 85:117–128

    Google Scholar 

  • World Health Organization Strategic Advisory Group of Experts (SAGE) on Immunization (2009) Background paper on the integration of oral cholera vaccines into global cholera programs, pp 1–74. http://www.Who.int/immunization/sage/1-Background_Paper__Cholera_Vaccine_FinalDraft_13_oct_v2.pdf

  • Xing D, Gaines-Das R, Newland P, Corbel M (2002) Comparison of the bioactivity of reference preparations for assaying Bordetella pertussis toxin activity in vaccines by the histamine sensitization and Chinese hamster ovary-cell tests: assessment of validity of expression of activity in terms of protein concentration. Vaccine 20:3535–3642

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Maes A, Behr-Gross M-E, Costanzo A, Daas A, Buchheit KH (2010) Collaborative study for the standardization of the histamine sensitizing test in mice and the CHO cell-based assay for the residual toxicity testing of acellular pertussis vaccines. Pharmeur Bio Sci Notes 1:51–63

    Google Scholar 

  • Xing D, Yuen C-T, Asokanathan C, Rigsby P, Horiuchi Y (2012) Evaluation of an in vitro assay system as a potential alternative to current histamine sensitization test for acellular pertussis vaccines. Vaccine 40:456–465

    CAS  Google Scholar 

  • Yuen C-T, Canthaboo C, Menzies JA, Cyr T, Whitehouse LW, Jones C, Corbel MJ, Xing D (2002) Detection of residual pertussis toxin in vaccines using a modified ribosylation assay. Vaccine 21:44–52

    Article  CAS  PubMed  Google Scholar 

  • Yuen C-T, Horiuchi Y, Asokanathan C, Cook S, Douglas-Bardsley A, Ochiai M, Corbel M, Xing D (2010) An in vitro assay system as a potential replacement for the histamine sensitization test for acellular pertussis based combination vaccines. Vaccine 28:3714–3721

    Article  CAS  PubMed  Google Scholar 

  • Zomber G, Reuveny S, Garti N, Shafferman A, Elhanany E (2005) Effects of spontaneous deamidation on the cytotoxic activity of the Bacillus anthracis protective antigen. J Biol Chem 280(48):39897–39906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Juan Arciniega at the US FDA for reviewing and editing the D, T, aP, and DTaP sections. The authors are grateful to Eleonora Fregolino, Luca Simeone, Chiara Parlati, Alessandro Vadi, Rosy Galasso, Cristiana Campa for their important contributions to OMV understanding, and to Anna Rita Taddei, for producing the TEM data reported, within the Novartis Vaccines collaboration with C.I.M.E. (Centro Interdipartimentale Microscopia Elettronica), University of Tuscia, Viterbo, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan M. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, SM. et al. (2015). Analytical Control Strategy of Bacterial Subunit Vaccines. In: Nunnally, B., Turula, V., Sitrin, R. (eds) Vaccine Analysis: Strategies, Principles, and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_6

Download citation

Publish with us

Policies and ethics