Skip to main content

Recombinant Virus-like Particle Protein Vaccines

  • Chapter
  • First Online:
Book cover Vaccine Analysis: Strategies, Principles, and Control

Abstract

Viral diseases offer a major challenge to vaccine development because of the complex nature of virus structures and the large size of the virus particle needed to generate an effective immune response. Viral diseases frequently stimulate both Th2 (antibody-mediated) and Th1 (cell-mediated) immune pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott_Diagnostics (2012) 40 years of hepatitis leadership. http://international.abbottdiagnostics.com/About_Us/Hepatitis_Leadership/

  • Akahata W, Nabe LG (2012) A specific domain of the Chikungunya virus E2 protein regulates particle formation in human cells: implications for alphavirus vaccine design. J Virol 86:8879–8883

    Google Scholar 

  • Capen R, Shank-Retzlaff M, Sings H, Esser M, Sattler C, Washabaugh M et al. (2007) Establishing potency specifications for antigen vaccines. BioProcess Int 5:30–42

    Google Scholar 

  • CHMP (2006) European medicines agency final report GARDASIL scientific discussion. EMEA

    Google Scholar 

  • Cohen S, Ward G, Tsai P (1999) MALDI-MS characterization of human papillomavirus protein. Proceedings of the 47th American society for mass spectrometry conference, Dallas, TX, pp 13–17

    Google Scholar 

  • Cohen S, Ward G, Oswald B, Tsai P (2000) A novel approach to analyze membrane proteins and peptides by mass spectrometry. Proceedings of the 48th American society for mass spectrometry conference, Long Beach, CA

    Google Scholar 

  • Cox M (2011) A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 107:531–541

    Article  Google Scholar 

  • Cox M (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Descamps J, Giffroy D, Remy E, Mortiaux F, Mareschal J-C, Ponsar C et al. (2011) A case study of development, validation and acceptance of a non-animal method for assessing human vaccine potency. Procedia Vaccinol 5:184–191

    Google Scholar 

  • Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y et al (2010) Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix, the ASO4-adjuvanted HPV-16 and -18 cervical cancer vaccine. Human Vaccines 6:407–419

    Article  CAS  PubMed  Google Scholar 

  • Dunne E, Datta S (2008) A review of prophylactic human papillomavirus vaccines: recommendations and monitoring in the US. Cancer 113:2995–3003

    Article  PubMed  Google Scholar 

  • Eckels K, Harrison V, Hetrick F (1970) Chikungunya virus vaccine prepared by tween-ether extraction. Appl Microbiol 19:321–325

    Google Scholar 

  • EP (2008) Hepatitis B vaccine (rDNA) 01/2008:1056. In: EP, European Pharmacopea, EDQM

    Google Scholar 

  • EP (2010a) Human papillomavirus vaccine (rDNA) 01/2010:2441. In: European Pharmacopeia, EDQM

    Google Scholar 

  • EP (2010b) Assay of hepatitis B vaccine 01/2008:20715. In: European Pharmacopea, EDQM

    Google Scholar 

  • FDA (2013) http://www.flublok.com/pscp2.pdf

  • Fischman J (2006) Sticking it to cancer. US news and world report

    Google Scholar 

  • Fox C (2012) Characterization of TLR4 agonist effects on alhydrogel(R) sedimentation: a novel application of laser scattering optical profiling. J Pharm Sci 101:4357–4364

    Article  CAS  PubMed  Google Scholar 

  • Gavilanes F, Gonzalez-Ros JM, Peterson DL (1982) Structure of hepatitis B surface antigen. J Biol Chem 257:7770–7777

    CAS  PubMed  Google Scholar 

  • Gavilanes F, Gomez-Gutierrez J, Miguel Gonzalez-Pos J, Ferragut J, Guerrero E et al (1990) Hepatitis B surface antigen role of lipids in maintaining the structural and antigenic properties of protein components. Biochem J 265:857–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert R, Beales L, Blond D, Simon M, Lin B, Chisari F et al. (2005) Hepatitis B small surface antigen particles are octahedral. Proc Natl Acad Sci USA 102:14783–14788

    Google Scholar 

  • Grachev VP, Magrath DI (1993) Quality control of hepatitis B vaccine. In: Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 103–121

    Google Scholar 

  • Greiner V, Egele C, Oncul S, Ronzon F, Manin C, Klymchenko A et al (2010) Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie 92:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Li M, Tarlov MJ, Zachariah MR (2012) Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol 291–300

    Google Scholar 

  • Harrison S (1990) Fields virology. In: Fields virology, vol 2. Raven, New York, pp 37–61

    Google Scholar 

  • Hemling ME, Carr SA, Capiau C, Petre J (1988) Structural characterization of recombinant hepatitis B surface antigen protein by mass spectrometry. Biochemistry 27:699–705

    Article  CAS  PubMed  Google Scholar 

  • Hilleman M (1993) Plasma-derived hepatitis B vaccine: a breakthrough in preventive medicine. In Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 17–39

    Google Scholar 

  • Le Duff Y, Blanchet M, Sureau C (2009) The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol 3:12443–12451

    Article  Google Scholar 

  • Le Tallec D, Doucet D, Ekouahabii P, Deschuyteneer M, Deschamps M (2009) Cervarix, The GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon lon-term storage and under simulated cold chain break conditions. Human Vaccines 5:467–474

    Article  PubMed  Google Scholar 

  • Li Y, Bi J, Zhao W, Huang Y, Sun L, Zeng A-P et al (2007) Characterization of the large size aggregation of hepatitis B virus surface antigen (HBsAg) formed in ultrafiltraion process. Process Biochem 42:315–319

    Article  CAS  Google Scholar 

  • Li S, Tang X, Seetharaman J, Yang C, Gu Y et al. (2009) Dimerization of hepatitis E virus capsid protein E2 s domain is essential for virus–host interaction. PLoS Pathog 5(8):e1000537

    Google Scholar 

  • Mach H, Volkin D, Troutman R, Wang B, Luo Z, Jansen K et al (2006) Disassembly and reassembly of yeast derived recombinant human papillomavirus-like particles (HPV VLPs). J Pharm Sci 95:2195–2206

    Article  CAS  PubMed  Google Scholar 

  • MacNair JEDT (2005) Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23). Biologicals 33:49–58

    Article  CAS  PubMed  Google Scholar 

  • Mangold C, Unckell F, Wer RM, Streeck R (1995) Secretion and antigenicity of hepatitis B virus small envelope proteins lacking cysteines in the major antigenic region. Virology 211:535–543

    Article  CAS  PubMed  Google Scholar 

  • Markowitz L, Hariri S, Lin C, Dunne E, Steinau M, McQuillan G et al (2013) Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, national health and nutrition examination surveys, 2003–2010. J Infect Dis 208:385–393

    Article  CAS  PubMed  Google Scholar 

  • Mead P, Slutsker L, Dietz V, McCaig L, Bresee J, Shapiro C et al (1999) Food-related illness and death in the United States. Emerg Infect Dis 607–625

    Google Scholar 

  • Milne J, Borgnia M, Bartesaghi A, Tran E, Earl L, Schauder D et al (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280:28–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr J, Chuan Y, Wu Y, Lua L, Middelberg A (2013) Virus-like particle formulation optimization by miniaturized high-throughput screening. Methods 60:248–256

    Google Scholar 

  • Mulder A, Carragher B, Towne V, Meng YW, Dieter L, Potter C et al. (2012) Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLos One 7:e33235

    Google Scholar 

  • Murphy G, Jensen G (2007) Electron cryotomography. Biotechniques 43:413

    Article  CAS  PubMed  Google Scholar 

  • Orlova E, Saibil H (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111:7710–7748

    Google Scholar 

  • Patel M, Widdowson M, Glass R, Akazawa K, Vinje J, Parashar U (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 2008:1224–1231

    Google Scholar 

  • PDA (2012) A-VAX: applying quality by design to vaccines. http://www.ispe.org/2013-biotechconference/a-vax-applying-qbd-to-vaccines.pdf

  • Pease LF, Lipin D, Tsai D-H, Zachariah M, Lua L, Tarlov M et al (2009) Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 102:845–855

    Article  CAS  PubMed  Google Scholar 

  • Peterson DL (1981) Isolation and characterization of the major protein and glycoprotein of hepatitis B surface antigen. J Biol Chem 256:6975–6983

    CAS  PubMed  Google Scholar 

  • Peterson DL, Nath N, Gavilanes F (1982) Structure of hepatitis B surface antigen correlation of subtype with amno acid sequence and locatio of the carbohydrate moeity. J Biol Chem 257:10414–10420

    CAS  PubMed  Google Scholar 

  • Petre J, Van Wijnendaele F, De Neys B, Conrath K, Van Opstal O, Hauser P et al (1987) Development of a hepatitis B vaccine from transformed yeast cells. Postgrad Med J 63(Suppl 2):73–81

    CAS  PubMed  Google Scholar 

  • Ross R (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg 54:177–191

    Google Scholar 

  • Salisse J, Sureau C (2009) A function essential to viral entry underlies the hepatitis B virus a determinant. J Virol 83:9321–9328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schofield T (2002) In vito versus in vivo concordance: a case study of the replacement of an animal potency test with an immunochemical assay. In: Karger BF (ed) Advancing science and elimination of the use of laboratory animals for development and control of vaccines and hormones. Karger, Basel, pp 299–304

    Google Scholar 

  • Shank-Retzlaff M, Wang E, Morley T, Anderson C, Hamm M, Brown M et al (2005) Correlation between mouse potency and in vitro relative potency for human papillomavirus type 16 virus like particles and gardasil vaccine samples. Human Vaccines 1:191–197

    Article  CAS  PubMed  Google Scholar 

  • Shank-Retzlaff M, Zhao Q, Anderson C, Hamm M, High K, Nguyen M et al (2006) Evaluation of the thermal stability of gardasil. Human Vaccines 2:147–154

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Sings H, Bryan J, Wang B, Wang Y, Mach H et al (2007) GARDASIL: prophylactic human papillomarvirus vaccine development—from bench top to bed-side. Clin Phamacol Ther 81:259–264

    Article  CAS  Google Scholar 

  • Short J, Chen S, Roseman A, Butler P, Crowther RA (2009) Structure of hepatitis B surface antigen from subviral tubes determined by electron cryomicroscopy. J Mol Biol 390:135–141

    Article  CAS  PubMed  Google Scholar 

  • Sitrin R (2010) After the license approval: how analytics can keep you in the market. In: Vaccine technology III, Nuevo Vallarta, Mexico: engineering conferences international, http://dc.engconfintl.org/cgi/viewcontent.cgi?article=1028&context=vaccine_iii

  • Sitrin RD, Wampler DE, Ellis RW (1993) Survey of licensed hepatitis B vaccines and their production processes. In: Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 83–102

    Google Scholar 

  • Stephenne J (1990) Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine 8 suppl:S69-S73

    Google Scholar 

  • Stirk H, Thornton J, Howard C (1992) A topological model for hepatitis B surface antigen. Intervirology 33:148–158

    CAS  PubMed  Google Scholar 

  • Towne V, Zhao Q, Brown M, Finnefrock A (2013) Pairwise antibody footprinting using suface plasmon resonance technology to characterize human papilloamavirus type 16 virus like particles with direct anti-HPV antibody immobilization. J Immunol Methods 388:1–7

    Article  CAS  PubMed  Google Scholar 

  • Wampler DE, Lehman ED, Bodger J, McAleer WL, Scolnick EM (1985) Multiple chemical forms of hepatitis B surface antigen produced in yeast. Proc Nat Acad Sci 82:6830–6834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO (1988) Requirements for hepatitis B vaccine prepared from plasma. Requirements for biological substances 31. World health organization technical report series 771; annex 8, pp 181 = -207

    Google Scholar 

  • WHO (1989) Requirements for hepatitis B vaccines made by recombinant DNA techniques. WHO, Requirements for biological substances no 45. World health organization, technical report series, no 786, pp 38–70

    Google Scholar 

  • WHO (2006) Guidelines to assure the quality, safety and efficacy of recombinant papillomavirus virus-like particle vaccines. Expert comitttee on biological standardization WHO/BS/06.2050

    Google Scholar 

  • Yang C, Pan H, Wei M, Zhang X, Wang N, Gu Y et al (2013) Hepatitis E virus capsid protein assembles in 4M urea in the presence of salts. Protein Sci 22:314–326

    Google Scholar 

  • Zhang J, Gu S, Li S, He Z, Huang G, Zhuang H et al (2005) Analysis of hepatitis E virus neutralization sites using monoclonal antibodies directed against a virus capsid protein. Vaccine 23:2881–2892

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang Y, Freed D, Fu T-M, Gimenez J, Sitrin R et al (2006) Maturation of recombinant hepatitis B surface antigen particles. Human Vaccines 2:174–180

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Towne V, Brown M, Wang Y, Abraham D, Oswald CB et al (2011a) In-depth process understanding of RECOMBIVAX HB maturation and potential epitope improvements with redox treatment: multifaceted biochemical and immunochemical characterization. Vaccine 29:7936–7941

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang Y, Abraham D, Towne V, Kennedy R, Sitrin R (2011b) Real time monitoring aof antigenicity development of HBsAg virus like particles (VLPs) during heat- and reox-treatment. Biochem Biophys Res Commun 408:447–453

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Allen M, Wang Y, Wang B, Wang N, Shi L et al (2012a) Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus like particles. Nanomed Technol Biol Med 8:1182–1189

    Article  CAS  Google Scholar 

  • Zhao Q, Modis Y, High K, Towne V, Meng Y, Alexandrof J et al (2012b) Disassembly and reassembly of human papillomavirus virus like particle produces more virion like antibody activity. Virol J 9:1–13

    Article  Google Scholar 

  • Zhao Q, Jun Z, Jun Wu T, Li S-W, Ng M-H et al (2013a) Antigenic determinants of hepatitis E virus and vaccine-induced immunogenicity and efficacy. J Gastroenterol 48:159–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Li S, Yu H, Xia N, Modis Y (2013b) Virus-like particle-based human vaccines: quality assessment based on structural and functinal properties. Trends Biotechnnol 31:654–663

    Google Scholar 

  • Zhao Q, Potter C, Carragher B, Alexandroff J, Towne V, Abraham D et al (2014) Use of cryo electron microscopy to visualize the structural features and binding to functional antibodies of virus-like particles in GARDASIL®. Human Vaccines Immunother 10:734–739

    Article  Google Scholar 

  • Zhu F, Zhang J, Zhang X, Zhou C, Wang Z, Huang S et al (2010) Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo controlled, phase 3 trial. Lancet 376(9744):895–902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank John A. Gilly, Leidos Biomedical Research, Inc. Vaccine Research Center (NIH) at Frederick and Charles R. Petrie, Takeda Vaccines, Inc. Bozeman, MT for contributing sections on Chikungunya and Norovirus, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Sitrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sitrin, R.D., Zhao, Q., Potter, C.S., Carragher, B., Washabaugh, M.W. (2015). Recombinant Virus-like Particle Protein Vaccines. In: Nunnally, B., Turula, V., Sitrin, R. (eds) Vaccine Analysis: Strategies, Principles, and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_3

Download citation

Publish with us

Policies and ethics