Skip to main content

Vaccine Potency Assays

  • Chapter
  • First Online:
Vaccine Analysis: Strategies, Principles, and Control

Abstract

Historically, vaccines have predominantly been manufactured through complex biological processes (growth in embryonic chicken eggs, bacterial fermentation, and mammalian cell culture) that can be challenging to control and reproduce. Although the introduction of Quality by Design principles is changing the “the process is the product” mindset, the development of appropriate release assays remains a critical element in ensuring the safety and efficacy of a vaccine throughout its shelf life. The development of relevant and robust potency assays requires careful consideration of the nature of the protective immune response to the targeted antigen as well as a detailed understanding of the structural features of the antigen that elicit the protective response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 21CFR600.3 (2013). CFR title 21 600.3. FDA.gov: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=600.3. Accessed 7 April 2014

  • 21CFR610.10 (2013). CFR title 21 610.10. FDA.gov: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=610.10. Accessed 7 April 2014

  • Bartell P, Tint H (1961) Correlation of three potency assay methods for smallpox vaccines. J Immunol 348–353

    Google Scholar 

  • Calmette A, Guerin C (1901) Recherches sur la vaccine experimentale. Ann Inst Pasteur 15:161

    Google Scholar 

  • Coombes L, Stickings P, Tierney R, Rigsby P, Sesardic D (2009) Development and use of a novel in vitro assay for testing of diphtheria toxoid in combination vaccines. J Immunol Met 350(1–2):142–149

    Article  CAS  Google Scholar 

  • Coombes L, Tierney R, Rigsby P, Sesardic D (2012) In vitro antigen ELISA for quality control of tetanus vaccines. Biologicals 40(6):466–472

    Article  CAS  PubMed  Google Scholar 

  • Copeman SM (1902) Modern methods of vaccination and their scientific basis. Med Chir Trans 85:243–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • CoPoP (2011) Timelines. From the history of vaccines: http://www.historyofvaccines.org/content/timelines/all. Accessed 18 April 2014

  • Emini EA, Ellis RW, Miller WJ, McAleer WJ, Scolnick EM, Gerety RJ (1986) Production and immunological analysis of recombinant hepatitis B vaccine. J Infect 13(Suppl A):3–9

    Google Scholar 

  • EU (2010). Legislation for the protection of animals used for scientific purposes. European Commission: http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm. Accessed 18 April 2014

  • FDA (2013) Approved vaccines. FDA.gov: http://www.fda.gov/biologicsbloodvaccines/vaccines/approvedproducts/ucm093830.htm. Accessed 24 May 2014

  • Giffroy D, Mazy C, Duchene M (2006) Validation of a new ELISA method for in vitro potency assay of hepatitis B-containing vaccines. Pharmeuropa Bio 2006(1):7–14

    Google Scholar 

  • Habig WH (1993) Potency testing of bacterial vaccines for human use. Vet Microbiol 37:343–351

    Google Scholar 

  • Hendriksen C (2009) Replacement, reduction and refinement alternatives to animal use in vaccine potency measurement. Expert Rev Vaccines 8(3):313–322

    Google Scholar 

  • Hering D, Thompson W, Hewetson J, Little S, Norris S, Pace-Templeton J (2004) Validation of the anthrax lethal toxin neutralization assay. Biologicals 32:17–27

    Google Scholar 

  • IAC (2006) Immunization action coalition. Vaccine Timeline: http://www.immunize.org/timeline/. Accessed 18 April 2014

  • ICHQ2(R1) (1996) Validation of analytical procedures: text and methodology. ICH.org: http://www.ich.org/products/guidelines/quality/quality-single/article/validation-of-analytical-procedures-text-and-methodology.html. Accessed 9 April 2014

  • ICHQ5C (1995) ICH Q5C Stability testing of biotechnological/biological products. ICH.org: http://www.ich.org/products/guidelines/quality/quality-single/article/stability-testing-of-biotechnologicalbiological-products.html. Accessed 9 April 2014

  • ICHQ6B (1999) ICH Q6B specifications: test procedures and acceptance criteria for biotechnological/biological products. ICH.org: http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 8 April 2014

  • Kikukawa A, Gomi Y, Akechi M, Onishi T, Manabe S, Namazue J et al (2012) Superior immunogenicity of a freeze-dried, cell culture-derived Japanese encephalitis vaccine (inactivated). Vaccine 30:2329–2335

    Google Scholar 

  • Kim KH, Yu J, Nahm MH (2003) Efficiency of a pneumococcal opsonophagocytic killing assay improved by multiplexing and by coloring colonies. Clin Vaccine Immunol 10:616–621

    Google Scholar 

  • Kolb RW, Cutchins EC, Jones WP, Aylor HT (1961) A comparison of the rabbit scarification technique with titrations in cell cultures for the potency assay of smallpox vaccine. Bull World Health Org 25:25–32

    Google Scholar 

  • Leake JP, Force JN (1927) A method for estimating the potency of smallpox vaccine. Bulletin of the hygienic laboratory, No. 149. U.S.P.H.S, Washington

    Google Scholar 

  • Leparc-Goffart I, Poirier B, El Zaouk A, Tissier M-H, Fuchs F (2003) New generation of cell culture assay for smallpox vaccine potency. J Clin Microbiol 41(8):3687–3689

    Google Scholar 

  • Milstien JB (2004) Regulation of vaccines: strengthening the science base. J Public Health Policy 25(2):173–189

    Google Scholar 

  • Mo C, Yamagata R, Pan A, Reddy J, Hazari N, Duke G (2008) Development of a high-throughput Alamar blue assay for the determination of influenza virus infectious dose, serum antivirus neutralization titer and virus ca/ts phenotype. J Virol Met 150:63–69

    Google Scholar 

  • Monath TP, Lee CK, Julander JG, Brown A, Beasley DW, Watts DM et al (2010) Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity. Vaccine 28:3827–3840

    Google Scholar 

  • Ph.Eu.2.7.6 (2005) European pharmacopoeia 8th edition—2.7.6. EDQM.eu: http://www.edqm.eu/en/european-pharmacopoeia-8th-edition-1563.html. Accessed 18 April 2014

  • Ph.Eur.2.7.16 (2012) European pharmacopoeia 8th edition—2.7.16. EDQM.EU: http://www.edqm.eu/en/european-pharmacopoeia-8th-edition-1563.html. Accessed 9 April 2014

  • Poirier B, Morgeaux S, Variot P, Fuchs F (2000) In vitro potency assay for hepatitis A vaccines. Biologicals 28(4):247–256

    Google Scholar 

  • Ranheim T, Mathis P, Joelsson D, Smith M, Campbell K, Lucas G et al (2006) Development and application of a quantitative RT-PCR potency assay for a pentavalent rotavirus vaccine (RotaTeq®). J Virol Met 193–201

    Google Scholar 

  • Russell W, Burch R (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  • Schalk J, de Vries C, Jongen P (2005) Potency estimation of measles, mumps and rubella trivalent vaccines with quantitative PCR infectivity assay. Biologicals 33(2):71–79

    Google Scholar 

  • Seligmann EB (1996) The NIH test for potency. In: Meslin F, Kaplan M, Koprowski H (eds) Laboratory techniques in rabies. WHO, Geneva

    Google Scholar 

  • Sesardic T (2012) Bioassays for evaluation of medical products derived from bacterial toxins. Curr Opin Microbiol 15:310–316

    Google Scholar 

  • Shank-Retzlaff M, Wang F, Morley T, Anderson C, Hamm M, Brown M et al (2005) Correlation between mouse potency and in vitro relative potency for human papillomavirus type 16 virus-like particles and Gardasil® vaccine samples. Human Vaccines 1(5):191–197

    Google Scholar 

  • Shanmugham R, Thirumeni N, Rao VS, Pitta V, Kasthuri S, Singanallur NB et al (2010) Immunocapture enzyme-linked immunosorbent assay for assessment of in vitro potency of recombinant hepatitis B vaccines. Clin Vaccine Immunol 17(8):1252–1260

    Google Scholar 

  • Smith D, Harding G, Chan J, Edwards M, Hank J, Muller D et al (1979) Potency of 10 BCG vaccines as evaluated by their influence on the bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Stand 7:179–197

    Google Scholar 

  • Souvras M, Montagnon B, Fanget B, van Wezel AL, Hazendonk AG (1980) Direct enzyme linked immunosorbent assay (ELISA) for quantification of poliomyelitis virus D-antigen. Dev Biol Stand 46:197–202

    Google Scholar 

  • Stephenne J (1990) Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine 8(Suppl):S69–S73

    Google Scholar 

  • Van Vliet JH, Colinet G, Yane F, Lemoine P (1987) A simplified plaque assay for varicella vaccine. J Virol Met 18(2–3):113–120

    Google Scholar 

  • WHO (2005) Biologicals. WHO: http://www.who.int/biologicals/publications/trs/areas/vaccines/nonclinical_evaluation/en/. Accessed 8 April 2014

  • WHO (2006) Reference standards. WHO: http://www.who.int/bloodproducts/publications/TRS932Annex2_Inter_biolefstandardsrev2004.pdf?ua=1. Accessed 2 May 2014

  • WHO (2014). Catalogue. WHO: http://www.who.int/bloodproducts/catalogue/Vacc2014.pdf?ua=1. Accessed 1 May 2014

  • Wood JM, Schild GC, Newman RW, Seagroatt V (1977) An improved single-radial-immunodiffusion technique for the assay of influenza haemagglutinin antigen: application for potency determinations of inactivated whole virus and subunit vaccines. J Biol Stand 5:237–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Ranheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ranheim, T., Mozier, N., Egan, W. (2015). Vaccine Potency Assays. In: Nunnally, B., Turula, V., Sitrin, R. (eds) Vaccine Analysis: Strategies, Principles, and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45024-6_13

Download citation

Publish with us

Policies and ethics