Skip to main content

2,6-Diazasemibullvalenes: Synthesis, Structural Characterization, and Theoretical Analysis

  • Chapter
  • First Online:
The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes

Part of the book series: Springer Theses ((Springer Theses))

  • 341 Accesses

Abstract

Efficient one-pot synthesis and isolation of a series of NSBVs were developed by oxidant-induced C–N bond formation. For the first time, the single-crystal structure of an NSBV (5-1a) was determined and the molecule showed a localized structure. The C-symmetrical structure of 5-1a in solution along with line broadening of the NMR signal at −110 °C indicates an extremely low barrier of the rapid degenerate aza-Cope rearrangement. DFT calculations at B3LYP/6-31G* level show that 5-1a should be the predominant form in the gas or condensed phase; however, the existence of the homoaromatic 5-1a deloc is highly possible. The activation barrier ΔG was determined to be 4.4 kcal/mol by line shape analysis of low-temperature 13C NMR spectra, comparable with 2.1 kcal/mol calculated value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winstein S (1959) Homo-aromatic structures. J Am Chem Soc 81:6524–6525

    Article  CAS  Google Scholar 

  2. Williams RV (2001) Semibullvalenes and related molecules: ever closer approaches to neutral homoaromaticity. Eur J Org Chem 2001:227–235

    Google Scholar 

  3. Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204

    Article  CAS  Google Scholar 

  4. Zimmerman HE, Grunewald GL (1966) The chemistry of barrelene. 111. A unique photoisomerization to semibullvalene. J Am Chem Soc 88:183–184

    Article  CAS  Google Scholar 

  5. Cheng AK, Anet FAL, Mioduski J et al (1974) Determination of the fluxional barrier in semibullvalene by proton and carbon-1 3 nuclear magnetic resonance spectroscopy. J Am Soc 96:2887–2891

    Article  CAS  Google Scholar 

  6. Quast H, Mayer A, Peters E-M et al (1989) 2,6-Dicyan-l,5-tetramethylensemibullvalen. Chem Ber 122:1291–1306

    Article  CAS  Google Scholar 

  7. Quast H, Carlsen J, Janiak R et al (1992) Synthesis and X-ray diffraction analysis of bis(phenylsulphony1)semibullvalenes. Lifting of the degeneracy of semibullvalenes in the crystal lattice. Chem Ber 125:955–968

    Article  CAS  Google Scholar 

  8. Williams RV, Gadgil VR, Chauhan K et al (1996) 1,5-Dimethyl-2,4,6,8-semibullvalene tetracarboxylic dianhydride: a close approach to a neutral homoaromatic semibullvalene. J Am Chem Soc 118:4208–4209

    Article  CAS  Google Scholar 

  9. Jackman LM, Fernandes E, Heubes M et al (1998) The effects of substituents on the degenerate cope rearrangement of semibullvalenes and barbaralanes. Eur J Org Chem 1998:2209–2227

    Google Scholar 

  10. Quast H, Heubes M, Dietz T et al (1999) Thermal isomerisation of substituted semibullvalenes and cyclooctatetraenes—a kinetic study. Eur J Org Chem 1999:813–822

    Google Scholar 

  11. Seefelder M, Heubes M, Quast H et al (2005) Experimental and theoretical study of stabilization of delocalized forms of semibullvalenes and barbaralanes by dipolar and polarizable solvents. Observation of a delocalized structure that is lower in free energy than the localized form. J Org Chem 70:3437–3449

    Article  CAS  Google Scholar 

  12. Griffiths PR, Pivonka DE, Williams RV (2011) The experimental realization of a neutral homoaromatic carbocycle. Chem Eur J 17:9193–9199

    Article  CAS  Google Scholar 

  13. Wang C, Yuan J, Li G et al (2006) Metal-mediated efficient synthesis structural characterization and skeletal rearrangement of octasubstituted semibullvalenes. J Am Chem Soc 128:4564–4565

    Article  CAS  Google Scholar 

  14. Jiao H, Schleyer PvR (1993) Elimination of the barrier to cope rearrangement in semibullvalene by Li+ complexation. Angew Chem Int Ed Engl 32:1760–1763

    Article  Google Scholar 

  15. Goren AC, Hrovat DA, Seefelder M et al (2002) The search for bishomoaromatic semibullvalenes and barbaralanes: computational evidence of their identification by UV/Vis and IR spectroscopy and prediction of the existence of a blue bishomoaromatic semibullvalene. J Am Chem Soc 124:3469–3472

    Article  CAS  Google Scholar 

  16. Dewar MJS, Náhlovská Z, Náhlovský BD (1971) Diazabullvalene; a “nonclassical” molecule? Chem Commun 21:1377–1378

    Google Scholar 

  17. Greve DR (2011) Homoaromaticity in aza-and Phosphasemibullvalenes. A computational study. J Phys Org Chem 24:222–228

    Article  CAS  Google Scholar 

  18. Wu H-S, Jiao H, Wang Z-X et al (2003) Neutral bishomoaromatic semibullvalenes. J Am Chem Soc 125:10524–10525

    Article  CAS  Google Scholar 

  19. Schnieders C, Altenbach HJ, Müllen KA (1982) 2,6-Diazasemibullvalene. Angew Chem Int Ed Engl 21:637–638

    Article  Google Scholar 

  20. Schnieders C, Huber W, Lex J et al (1985) 1,5-Diazocines. Angew Chem Int Ed Engl 24:576–577

    Article  Google Scholar 

  21. Düll B, Müllen K (1992) 2,6-Diaza-4,8-dicyanosemibullvalene. A short lived intermediate? Tetrahedron Lett 33:8047–8050

    Article  Google Scholar 

  22. Yu N, Wang C, Zhao F, Liu L, Zhang WX, Xi Z (2008) Diverse reactions of 1,4-dilithio-1,3-dienes with nitriles: facile access to tricyclic ∆1-Bipyrrolines, multiply substituted pyridines, siloles, and (Z,Z)-dienylsilanes by tuning of substituents on the butadienyl skeleton. Chem Eur J 14:5670–5679

    Article  CAS  Google Scholar 

  23. West SP, Bisai A, Lim AD, Narayan RR, Sarpong R (2009) Total synthesis of (+)-lyconadin a and related compounds via oxidative C–N bond formation. J Am Chem Soc 131:11187–11194

    Article  CAS  Google Scholar 

  24. Sasaki M, Yudin AK (2003) Oxidative cycloamination of olefins with aziridines as a versatile route to saturated nitrogen-containing heterocycles. J Am Chem Soc 125:14242–14243

    Article  CAS  Google Scholar 

  25. Zhang S, Wei J, Zhan M et al (2012) 2,6-Diazasemibullvalenes: synthesis, structural characterization, theoretical analysis and reaction chemistry. J Am Chem Soc 134:11964–11967

    Article  CAS  Google Scholar 

  26. Becke ADJ (1993) Density-functional thermochemistry. III. The role of exact exchange. Chem Phys 98:5648–5652

    CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Hehre WJ, Radom L, Schleyer PvR et al (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  29. Schleyer PvR, Maerker C, Dransfeld A et al (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  30. Chen Z, Wannere CS, Corminboeuf C et al (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoguang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S. (2015). 2,6-Diazasemibullvalenes: Synthesis, Structural Characterization, and Theoretical Analysis. In: The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45021-5_5

Download citation

Publish with us

Policies and ethics