Skip to main content

Zirconocene-Mediated Cyclization of Bis(alkynyl)silanes and Nitriles: Synthesis of N-Heterocycles and Isolation, Characterization, and Synthetic Application of Zr/Si-Containing Reactive Intermediates

  • Chapter
  • First Online:
The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

Zirconocene-mediated one-pot multi-component synthesis of 5-azaindole derivatives from bis(alkynyl)silane and three molecules of nitriles were developed. Isolation and characterization of Zr/Si-containing three-ring-fused organometallic complexes were achieved as three or two nitriles involved reactive intermediates. Based on the reaction chemistry of reactive intermediates with unsaturated compounds, various N-heterocycles were synthesized, including 5-azaindoles, 3-acylpyrrole, dihydropyrrolo[3,2-c]azepines, pyrrolo[3,2-d]pyridazine, and pyrrolo[2,3-c]pyridinone derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song JJ, Reeves JT, Gallou F et al (2007) Organometallic methods for the synthesis and functionalization of azaindoles. Chem Soc Rev 36:1120–1132

    Article  CAS  Google Scholar 

  2. Popowycz F, Mérour J-Y, Joseph B (2007) Synthesis and reactivity of 4-, 5- and 6-azaindoles. Tetrahedron 63:8689–8707

    Article  CAS  Google Scholar 

  3. Sun X, Wang C, Li Z et al (2004) Zirconocene-mediated intermolecular coupling of one molecule of Si-tethered diyne with three molecules of organonitriles: one-pot formation of pyrrolo [3,2-c] pyridine derivatives via cleavage of C≡N triple bonds of organonitriles. J Am Chem Soc 126:7172–7173

    Article  CAS  Google Scholar 

  4. Zhu J (2003) Recent developments in the Isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 7:1133–1144

    Google Scholar 

  5. Jacobi von Wangelin A, Neumann H, Gordes D et al (2003) Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide–aldehyde mixtures. Chem Eur J 9:4286–4294

    Article  Google Scholar 

  6. Zhu J, Bienayme H (eds) (2005) Multicomponent reactions. Wiley, Weinheim

    Google Scholar 

  7. Negishi E, Cederbaum FE, Takahashi T (1986) Reaction of zirconocene dichloride with alkyllithiums or alkyl Grignard reagents as a convenient method for generating a “zirconocene” equivalent and its use in zirconium-promoted cyclization of alkenes, alkynes, dienes, enynes, and diynes. Tetrahedron Lett 27:2829–2832

    Article  CAS  Google Scholar 

  8. Xi Z, Fischer R, Hara R et al (1997) Zirconocene-mediated intramolecular Carbon–Carbon bond formation of two alkynyl groups of Bis(alkynyl)silanes. J Am Chem Soc 119:12842–12848

    Article  CAS  Google Scholar 

  9. Takahashi T, Xi Z, Obora Y et al (1995) Intramolecular coupling of alkynyl groups of Bis(alkynyl)silanes mediated by zirconocene compounds: formation of silacyclobutene derivatives. J Am Chem Soc 117:2665–2666

    Article  CAS  Google Scholar 

  10. Yuan SC, Chen HB, Zhang Y et al (2006) Rigid linear and star-shaped π-conjugated 2,2′:6′,2″-terpyridine ligands with blue emission. Org Lett 8:5701–5704

    Article  CAS  Google Scholar 

  11. Zhang WX, Zhang S, Sun X et al (2009) Zirconium- and silicon-containing intermediates with three fused rings in a zirconocene-mediated intermolecular coupling reaction. Angew Chem Int Ed 121:7363–7367

    Article  Google Scholar 

  12. Ferreira MJ, Martins AM (2006) Group 4 ketimide complexes: synthesis reactivity and catalytic applications. Coord Chem Rev 250:118–132

    Article  CAS  Google Scholar 

  13. Anderson LL, Woerpel KA (2009) Formation and utility of azasilacyclopentadienes derived from silacyclopropenes and nitriles. Org Lett 11:425–428

    Article  CAS  Google Scholar 

  14. Zhang S, Sun X, Zhang WX et al (2009) One-pot multicomponent synthesis of azaindoles and pyrroles from one molecule of a silicon-tethered diyne and three or two molecules of organonitriles mediated by zirconocene. Chem Eur J 15:12608–12617

    Article  CAS  Google Scholar 

  15. Doxsee KM, Mouser JKM (1990) Metal-vinyl vs metal-alkyl insertion reactions of titanacyclobutenes with nitriles. Organometallics 9:3012–3014

    Article  CAS  Google Scholar 

  16. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89

    Article  Google Scholar 

  17. Suginome M, Ito Y (2004) Transition metal-mediated polymerization of isocyanides. Adv Polym Sci 171:77–136

    Article  CAS  Google Scholar 

  18. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210

    Article  Google Scholar 

  19. Spies P, Kehr G, Kehr S et al (2007) Formation and structural and dynamic features of atropisomeric η2-iminoacyl zirconium complexes. Organometallics 26:5612–5620

    Article  CAS  Google Scholar 

  20. Deng L, Chan H-S, Xie Z (2005) Synthesis structure and reactivity of a zirconocene-carboryne precursor. J Am Chem Soc 127:13774–13775

    Article  CAS  Google Scholar 

  21. Hill M, Erker G, Kehr G et al (2004) Exploring CH-activation pathways in bifunctional zirconocene/borane systems. J Am Chem Soc 126:11046–11057

    Article  CAS  Google Scholar 

  22. Zhang Y, Keaton RJ, Sita LR (2003) A case for asymmetric hydrozirconation. J Am Chem Soc 125:8746–8747

    Article  CAS  Google Scholar 

  23. Kuroda S, Sato Y, Mori M (2000) Reaction of silazirconacyclopentene formed from zirconium–silene complex and alkyne with isocyanide. J Organomet Chem 611:304–307

    Article  CAS  Google Scholar 

  24. Valero C, Grehl M, Wingbermuehle D et al (1994) Evidence of ketenimine formation during the multiple CC coupling of isocyanides by stabilized Group 4 metallacyclobutanes. Organometallics 13:415–417

    Article  CAS  Google Scholar 

  25. Berg FJ, Petersen JL (1992) Low-temperature NMR study of the reductive C, C-coupling of CNMe and structural characterization. Tetrahedron 48:4749–4756

    Article  CAS  Google Scholar 

  26. Berg FJ, Petersen JL (1991) Evidence of an alternative mechanism for the reductive coupling of isonitriles by electrophilic 1-Sila-3-Zirconacyclobutane complexes. Structural characterization of the bicyclic enediamido complexes Cp2Zr(N(CMe3)C(CH2SiMe2CH2)=CN(R)) where R = tert-Butyl and 2,6-Xylyl. Organometallics 10:1599–1607

    Article  CAS  Google Scholar 

  27. Berg FJ, Petersen JL (1989) Reactivity studies of the zirconium-induced insertion of isonitriles into a 1-sila-3-zirconacyclobutane ring. Structural and chemical evidence of “carbenium-like” intermediates for the intramolecular 1,2-silyl shift and reductive coupling reactions. Organometallics 8:2461–2470

    Article  CAS  Google Scholar 

  28. Whitby RJ, Dixon S, Maloney PR et al (2006) Identification of small molecule agonists of the orphan nuclear receptors liver receptor homolog-1 and steroidogenic factor-1. J Med Chem 49:6652–6655

    Article  CAS  Google Scholar 

  29. Vasse J-L, Szymoniak J (2004) Access to functionalized cyclopropylcarbinyl compounds from homoallylic ethers via zirconocene intermediates. Tetrahedron Lett 45:6449–6451

    Article  CAS  Google Scholar 

  30. Ahlers W, Erker G, Fröhlich R et al (1999) Coupling of σ-acetylide ligands at Group 4 metallocene complexes to yield methylenecyclopropene-type frameworks. J Organomet Chem 578:115–124

    Article  CAS  Google Scholar 

  31. Thomas E, Kasatkin AN, Whitby RJ (2006) Cyclopropyl carbenoid insertion into alkenylzirconocenes—a convergent synthesis of alkenylcyclopropanes and alkylidenecyclopropanes. Tetrahedron Lett 47:9181–9185

    Article  CAS  Google Scholar 

  32. Fürstner A, Thiel OR, Kindler N et al (2000) Total syntheses of (s)-(–)-zearalenone and lasiodiplodin reveal superior metathesis activity of ruthenium carbene complexes with imidazol-2-ylidene ligands. J Org Chem 65:7990–7995

    Article  Google Scholar 

  33. Ren S, Chan HS, Xie Z (2009) Synthesis structure and reactivity of zirconacyclopentene incorporating a carboranyl unit. J Am Chem Soc 131:3862–3863

    Article  CAS  Google Scholar 

  34. Takahashi T, Tsai F-Y, Li Y et al (2001) Reactions of zirconacyclopentadienes with CO and isonitriles. Organometallics 20:4122–4125

    Article  CAS  Google Scholar 

  35. Zhang S, Zhang WX, Xi Z (2010) efficient one-pot synthesis of N-containing heterocycles by multicomponent coupling of silicon-tethered diynes, nitriles and isocyanides through intramolecular cyclization of iminoacyl-Zr intermediates. Chem Eur J 16:8419–8426

    Article  CAS  Google Scholar 

  36. Pinho e Melo TMVD (2006) Conjugated azomethine ylides. Eur J Org Chem, 2873–2888

    Google Scholar 

  37. Martínez R, Arzate MMT, Ramírez-Apan M (2009) Synthesis and cytotoxic activity of new azepino [3′, 4′: 4, 5] pyrrolo [2, 1-a] isoquinolin-12-ones. Bioorg Med Chem 17:1849–1856

    Article  Google Scholar 

  38. Piras L, Genesio E, Ghiron C et al (2008) Scaffold preparation and parallel synthesis of arrays of 5, 6, 7, 8-tetrahydropyrrolo-azepinones in the solution phase. Eur J Org Chem, 2789–2800

    Google Scholar 

  39. Beaumont S, Retailleau P, Dauban P et al (2008) Synthesis of indolobenzazepinones by application of an isocyanide-based multicomponent reaction. Eur J Org Chem, 5162–5175

    Google Scholar 

  40. Murineddu G, Cignarella G, Chelucci G et al (2002) Synthesis and cytotoxic activities of pyrrole [2, 3-d] pyridazin-4-one derivatives. Chem Pharm Bull 50:754–759

    Article  CAS  Google Scholar 

  41. Dal Piaz V, Giovannoni MP, Castellana C et al (1997) Novel heterocyclic-fused pyridazinones as potent and selective phosphodiesterase IV inhibitors. J Med Chem 40:1417–1421

    Article  CAS  Google Scholar 

  42. Meade EA, Wotring LL, Drach JC et al (1992) Synthesis antiproliferative and antiviral activity of certain 4-aminopyrrolo [2, 3-d] pyridazine nucleosides: an entry into a novel series of adenosine analogs. J Med Chem 35:526–533

    Article  CAS  Google Scholar 

  43. Anary-Abbasinejad M, Charkhati K, Anakari-Ardakani H (2009) A novel approach to the synthesis of highly functionalized pyrroles. Synlett 7(2009):1115–1117

    Google Scholar 

  44. Driver TG (2010) Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org Biomol Chem 8:3831–3846

    Article  CAS  Google Scholar 

  45. Lang S, Murphy JA (2006) Azide rearrangements in electron-deficient systems. Chem Soc Rev 35:146–156

    Article  CAS  Google Scholar 

  46. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5188–5240

    Article  Google Scholar 

  47. Cenini S, Gallo E, Caselli A et al (2006) Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes. Coord Chem Rev 250:1234–1253

    Article  CAS  Google Scholar 

  48. Liang L, Astruc D (2011) The copper(i)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An Overview Coord Chem Rev 255:2933–2945

    Article  CAS  Google Scholar 

  49. Schilling C, Jung N, Bräse S (2010) In: Bräse S, Banert K (eds) Organic azides: syntheses and applications. Wiley, Chichester, p 269

    Google Scholar 

  50. Medal M, Tornøe CW (2008) Cu-catalyzed azide–alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  Google Scholar 

  51. Zhang S, Zhao J, Zhang WX et al (2011) One-pot synthesis of pyrrolo [3,2-d] pyridazines and pyrrole-2,3-diones via zirconocene-mediated four-component coupling of Si-tethered diyne, nitriles and azide. Org Lett 13:1626–1629

    Article  CAS  Google Scholar 

  52. Knobloch DJ, Benito-Garagorri D, Bernskoetter WH et al (2009) Addition of methyl triflate to a hafnocene dinitrogen complex: stepwise N2 methylation and conversion to a hafnocene hydrazonato compound. J Am Chem Soc 131:14903–14912

    Article  CAS  Google Scholar 

  53. Ugolotti J, Kehr G, Fröhlich R et al (2009) Nitrile insertion into a boryl-substituted five-membered zirconacycloallenoid: unexpected formation of a zwitterionic boratirane product. Chem Commun, 6572–6573

    Google Scholar 

  54. Cadierno V, Zablocka M, Donnadieu B et al (2000) Early transition metal α-diazoalkane complexes. Angew Chem Int Ed 39:4524–4528

    Article  CAS  Google Scholar 

  55. Vinogradova OV, Sorokoumov VN, Balova IA (2009) A short route to 3-alkynyl-4-bromo(chloro)cinnolines by Richter-type cyclization of ortho-(dodeca-1,3-diynyl)aryltriaz-1-enes. Tetrahedron Lett 50:6358–6360

    Article  CAS  Google Scholar 

  56. Kimball DB, Haley MM (2002) Triazenes: a versatile tool in organic synthesis. Angew Chem Int Ed 41:3338–3351

    Article  CAS  Google Scholar 

  57. Lamani M, Prabhu KR (2010) An efficient oxidation of primary azides catalyzed by copper iodide: a convenient method for the synthesis of nitriles. Angew Chem Int Ed 49:6622–6625

    Article  CAS  Google Scholar 

  58. Luh TY, Lee CF (2005) Dithioacetals as zwitterion synthons. Eur J Org Chem, 3875–3885

    Google Scholar 

  59. Schmuck C, Rupprecht D (2007) The synthesis of highly functionalized pyrroles: a challenge in regioselectivity and chemical reactivity. Synthesis 20:3095–3110

    Article  Google Scholar 

  60. Balme G (2004) Pyrrole syntheses by multicomponent coupling reactions. Angew Chem Int Ed 43:6238–6241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoguang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, S. (2015). Zirconocene-Mediated Cyclization of Bis(alkynyl)silanes and Nitriles: Synthesis of N-Heterocycles and Isolation, Characterization, and Synthetic Application of Zr/Si-Containing Reactive Intermediates. In: The Chemistry of Zirconacycles and 2,6-Diazasemibullvalenes. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45021-5_2

Download citation

Publish with us

Policies and ethics