Skip to main content

Abstract

Liquid crystals are intermediate states of matter or mesophases, a halfway between an isotropic liquid and a solid crystal. The penetration-enhancing ability of liquid crystals (LC) in topical formulations applied to the skin was evaluated by measuring in vitro, through excised hairless rat, the permeation profile of a model compound, calcein, entrapped in the LC formulation. Two physically stable formulations with LCs were prepared from a mixture of mono-, di-, and triesters (1) and monoesters (2) composed of erythritol and phytanylacetic acid. Cryo-transmission electron microscopy (cryo-TEM) and electron diffraction pattern observations of the LC nanodispersions showed that the structure of the LCs was reverse hexagonal (LC-A) and cubic (LC-B). The skin permeation of calcein was enhanced by its entrapping in LCs due to the increase in calcein partition from the LC dispersion into the skin, which was analyzed by the skin permeation-time profile. This chapter shows that LC dispersions can be used as topical carrier systems in drug formulations as well as in cosmetic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham W, Downing DT (1989) Preparation of model membranes for skin permeability studies using stratum corneum lipids. J Invest Dermatol 93:809–813

    Article  CAS  PubMed  Google Scholar 

  • Barauskas J, Landh T (2003) Phase behavior of phytantriol/water system. Langmuir 19:9562–9565

    Article  CAS  Google Scholar 

  • Brinon L, Geiger S, Alard V, Doucet J, Tranchant JF, Couarraze G (1999) Percutaneous absorption of sunscreens from liquid crystalline phases. J Control Release 60:67–76

    Article  CAS  PubMed  Google Scholar 

  • Conn CE, Drummond CJ (2013) Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter. doi:10.1039/C3SM27743G

    Google Scholar 

  • Dingler A, Gohla S (2002) Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul 19:11–18

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Esposito E, Drechsler M, Mariani P, Sivieri E, Bozzini R, Montesi L, Menegatti E, Cortesi R (2007) Nanosystem for skin hydration: a comparative study. Int J Cosmet Sci 29:39–47

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Hong C, Chiu W, Wang Y (2001) Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 219:61–72

    Article  CAS  PubMed  Google Scholar 

  • Geraghty PB, Attwood D, Collett JH, Sharma H, Dandiker Y (1997) An investigation of the parameters influencing the bioadhesive properties of Myverol 18–99/water gels. Biomaterials 18:63–67

    Article  CAS  PubMed  Google Scholar 

  • Gin DL, Pecinovsky CS, Bara JE, Kerr RL (2008a) Functional lyotropic liquid crystal materials. Liquid crystalline functional assemblies and their supramolecular structures and bonding. 128:181–222

    Google Scholar 

  • Gin DL, Pecinovsky CS, Bara JE, Kerr L (2008b) Functional lyotropic liquid crystal materials. Struct Bond 128:181

    Article  CAS  Google Scholar 

  • Garg G, Saraf S, Saraf S (2007) Cubosomes, an overview. Biol Pharm Bull 30:350–353

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1996) Cubic lipid-water phase dispersed into submicron particles. Langumuir 12:4611–4613

    Article  CAS  Google Scholar 

  • Hyde ST (1990) Curvature and the global structure of interfaces in surfactant-water systems. J Phys Colloq 51(C7):209–228

    Article  Google Scholar 

  • Israelachvili JN, Mitchel DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbons amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  • Kasha PC, Banga AK (2008) A review of patent literature for iontophoretic delivery and devices. Recent Pat Drug Deliv Formul 2:41–50

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen M, Urtti A, Valjakka-Koskelab R, Kiesvaara J, Mönkkönena J (1999) Liposome–skin interactions and their effects on the skin permeation of drugs. Eur J Pharm Sci 7:279–286

    Article  CAS  PubMed  Google Scholar 

  • Larsson K (1989) Cubic lipid-water phases: structure and biomembrane aspects. J Phys Chem 93:7304–7314

    Article  CAS  Google Scholar 

  • Lopes LB, Ferreira DA, de Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, Bentley MVLB (2006a) Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res 23:1332–1342

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Lopes JLC, Oliveira DCR, Thomazini JA, Garcia MTJ, Fantini MCA, Collett JH, Bentley MVLB (2006b) Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A, characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 63:146–155

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Speretta FFF, Bentley MVLB (2007) Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci 32:209–215

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  PubMed  Google Scholar 

  • Namdeo A, Jain NK (2002) Liquid crystalline pharmacogel based enhanced transdermal delivery of propranolol hydrochloride. J Control Release 82:223–236

    Article  CAS  PubMed  Google Scholar 

  • Norlén L (2001) Skin barrier formation, the membrane folding model. J Invest Dermatol 117:823–829

    Article  PubMed  Google Scholar 

  • Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60:1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ (2011) Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm 421:176–182

    Article  CAS  PubMed  Google Scholar 

  • Purdon CH, Azzi CG, Zhang J, Smith EW, Maibach HI (2004) Penetration enhancement of transdermal delivery–current permutations and limitations. Crit Rev Ther Drug Carrier Syst 21:97–132

    Article  CAS  PubMed  Google Scholar 

  • Silver B (1985) The physical chemistry of membranes. Solomon Press, Winchester

    Book  Google Scholar 

  • Tokudome Y, Sugibayashi K (2004) Mechanism of the synergic effects of calcium chloride and electroporation on the in vitro enhanced skin permeation of drugs. J Control Release 95:267–274

    Article  CAS  PubMed  Google Scholar 

  • Tokumoto S, Mori K, Higo N, Sugibayashi K (2005) Effect of electroporation on the electroosmosis across hairless mouse skin in vitro. J Control Release 105:296–304

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Nakamura N, Nagasawa T, Kitagawa A, Matsumoto K, Soma Y, Matsuda T, Mizoguchi M, Igarashi R (2006) Enhanced skin regeneration by nanoegg formulation of all-trans retinoic acid. Pharmazie 61:117–121

    CAS  PubMed  Google Scholar 

  • Yuli-Amar I (2008) Ph.D. Dissertation, The Hebrew University of Jerusalem

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sugibayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kadhum, W.R., Todo, H., Sugibayashi, K. (2015). Skin Permeation: Enhancing Ability of Liquid Crystal Formulations. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics