Skip to main content
  • 1848 Accesses

Abstract

Topical application of drugs has become very popular in the last decades. However, the outmost skin layer, the stratum corneum, represents an effective barrier against the intrusion of foreign substances and endogenous water loss, which has to be overcome. Besides ideal physicochemical properties of the applied drug, the formulation can promote drug diffusion into and through the different skin layers. Owing to the grade of disease or the localization of the treatment, various formulation types are commercially available, which can be classified into semisolid and liquid formulation types. Dermal therapeutics should deliver the drug in adequate concentrations to the right localization in the skin, where it should remain for a sufficient time period. A transdermal therapeutic, on the other hand, has to enable the drug to pass the skin and reach the blood and lymphatic system in order to act systemically. These processes, based on partition and diffusion of a drug, can be controlled by the formulation. Thus, various formulations with the same amount of the active compound provide different permeation profiles and skin concentrations of the active.

Topically applied formulations (dermal and transdermal formulations) present a complex mixture of various classes of substances, in order to ensure optimized pharmacological and sensory properties, as well as to pose no health risk for the consumer. Considering the physicochemical regularities of the drug diffusion process through the skin (e.g., Fick’s law of diffusion), various parameters like the diffusion or the partition coefficient can be altered to establish the desired permeation profile. However, each additive has to be critically examined, since interactions with the compound or the skin may occur.

As a consequence, each topically applied drug needs a formulation/vehicle precisely adapted to its physicochemical properties in order to provide an optimized diffusion into or through the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Lorenzo C, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A (1999) Microviscosity of hydroxypropylcellulose gels as a basis for prediction of drug diffusion rates. Int J Pharm 180:91–103

    Article  CAS  PubMed  Google Scholar 

  • Alves MP, Scarrone AL, Santos M, Pohlmann AR, Guterres SS (2007) Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm 341:215–220

    Article  CAS  PubMed  Google Scholar 

  • Baboota S, Shakeel F, Ahuja A, Ali J, Shafio S (2007) Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharm 57:315–332

    Article  CAS  PubMed  Google Scholar 

  • Bach M, Lippold BC (1998) Percutaneous penetration enhancement and its quantification. Eur J Pharm Biopharm 46:1–13

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Chan K, Denaro CP, Jacob P (1991) Stable isotope method for studying transdermal drug absorption: the nicotine patch. Clin Pharmacol Ther 50:286–293

    Article  CAS  PubMed  Google Scholar 

  • Boltri L, Morel S, Trotta M, Gasco MR (1994) In vitro transdermal permeation of nifedipine from thickened microemulsions. J Pharm Belg 49:315–320

    CAS  PubMed  Google Scholar 

  • Bonina F, Puglia C, Trombetta D, Dragani MC, Gentile MM, Clavenna G (2002) Vehicle effects on in vitro skin permeation of thiocolchicoside. Pharmazie 57:750–752

    CAS  PubMed  Google Scholar 

  • Bowen JL, Heard CM (2006) Film drying and complexation effects in the simultaneous skin permeation of ketoprofen and propylene glycol from simple gel formulations. Int J Pharm 307:251–257

    Article  CAS  PubMed  Google Scholar 

  • Chi SC, Jun HW (1991) Release rates of ketoprofen from poloxamer gels in a membraneless diffusion cell. J Pharm Sci 80:280–283

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Pugh WJ, Hadgraft J, Roberts MS (2001) Probing the effect of vehicles on topical delivery: understanding the basic relationship between solvent and solute penetration using silicone membranes. Pharm Res 18:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Daniels R, Knie U (2007) Galenics of dermal products-vehicles, properties and drug release. J Dtsch Dermatol Ges 5:367–383

    Article  PubMed  Google Scholar 

  • Ennen JG (2009) Influence of pH, viscosity and co-diffusion on drug permeation through bovine udder skin and silicone membrane. Thesis. University of Veterinary Medicine Hannover, Foundation

    Google Scholar 

  • FDA (U.S. Food and Drug Administration) (2013) Dosage forms. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/DataStandardsManualmonographs/ucm071666.htm. Accessed 11 Mar 2013

  • Gallagher SJ, Heard CM (2005) Solvent content and macroviscosity effects on the in vitro transcutaneous delivery and skin distribution of ketoprofen from simple gel formulations. Skin Pharmacol Physiol 18:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gallagher SJ, Trottet L, Heard CM (2003) Ketoprofen: release from, permeation across and rheology of simple gel formulations that simulate increasing dryness. Int J Pharm 268:37–45

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Robillard A, Cohen S, Black S, Sampalis J, Colizza D, de Takacsy F, Schecter R (2013). Real-life effectiveness and tolerability of rivastigmine transdermal patch in patients with mild-to-moderate Alzheimer's disease: The EMBRACE study, on behalf of the EMBRACE investigators. Curr Med Res Opin 29:989–1000

    Google Scholar 

  • Gil A, Nachum Z, Tal D, Shupak A (2012) A comparison of cinnarizine and transdermal scopolamine for the prevention of seasickness in naval crew: a double-blind,randomized, crossover study. Clin Neuropharmacol 35(1):37–39

    Google Scholar 

  • Guerol Z, Hekimoglu S, Demirdamar R, Sumnu M (1996) Percutaneous absorption of ketoprofen. I. In vitro release and percutaneous absorption of ketoprofen from different ointment bases. Pharm Acta Helv 71:205–212

    Article  Google Scholar 

  • Hadgraft J (2004) Skin deep. Eur J Pharm Biopharm 58:291–299

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Pugh WJ (1998) The selection and design of topical and transdermal agents: a review. J Investig Dermatol Symp Proc 3:131–135

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Valenta C (2000) pH, pK(a) and dermal delivery. Int J Pharm 200:243–247

    Article  CAS  PubMed  Google Scholar 

  • Hadgraft J, Whitefield M, Rosher PH (2003) Skin penetration of topical formulations of ibuprofen 5 %: an in vitro comparative study. Skin Pharmacol Appl Skin Physiol 16:142

    Google Scholar 

  • Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925

    Article  CAS  PubMed  Google Scholar 

  • Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH (2007) Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison. J Invest Dermatol 127:135–142

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Tanojo H, Lenn J, Deng CH, Krochmal L (2005) A novel foam vehicle for delivery of topical corticosteroids. J Am Acad Dermatol 53:26–38

    Article  Google Scholar 

  • James JS (1995) San Francisco area: testosterone replacement study, injection vs. patch. AIDS Treat News 233:7–8

    Google Scholar 

  • Kapil RP, Cipriano A, Friedman K, Michels G, Shet MS, Colucci SV, Apseloff G, Kitzmiller J, Harris SC (2012) Once-weekly transdermal buprenorphine application results in sustained and consistent steady-state plasma levels. J Pain Symptom Manage. doi:10.1016/j.jpainsymman.2012.06.014

    PubMed  Google Scholar 

  • Kemken J, Ziegler A, Mueller BW (1991) Pharmacodynamic effects of transdermal bupranolol and timolol in vivo: comparison of microemulsions and matrix patches as vehicle. Methods Find Exp Clin Pharmacol 13:361–365

    CAS  PubMed  Google Scholar 

  • Kietzmann M, Blume B (1997) Percutaneous absorption of betamethasone from different formulations using the isolated perfused bovine udder. In Vitro Toxicol 10:11–15

    CAS  Google Scholar 

  • Kwon YS, Kim JB, Jung HJ, Koo YJ, Lee IH, Im KT, Woo JS, Im KS (2012) Treatment for postoperative wound pain in gynecologic laparoscopic surgery: topical lidocaine patches. J Laparoendosc Adv Surg Tech A 22(7):668–673

    Article  PubMed  Google Scholar 

  • Lee WR, Shen SC, Kuo-Hsien W, Hu CH, Fang JY (2003) Lasers and microdermabrasion enhance and control topical delivery of vitamin C. J Invest Dermatol 121:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Lehmann KA, Zech D (1992) Transdermal fentanyl: clinical pharmacology. J Pain Symptom Manage 7:8–16

    Article  Google Scholar 

  • Magnusson BM, Anissimov YG, Cross SE, Roberts MS (2004) Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 122:993–999

    Article  CAS  PubMed  Google Scholar 

  • Minghetti P, Casiraghi A, Cilurzo F, Montanari L (2001) Evaluation of adhesive properties of transdermal therapeutic systems containing nitroglycerin. Boll Chim Farm 140:63–67

    CAS  PubMed  Google Scholar 

  • Mitriaikina S, Mueller-Goymann CC (2009) Comparative permeation studies of nondiluted and diluted betamethasone-17-valerate semisolid formulations through isolated human stratum corneum and artificial skin construct. Skin Pharmacol Physiol 22:142–150

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JB, Nielsen F, Sorensen JA (2004) In vitro percutaneous penetration of five pesticides–effects of molecular weight and solubility characteristics. Ann Occup Hyg 48:697–705

    Article  CAS  PubMed  Google Scholar 

  • Pattarino F, Carlotti ME, Gasco MR (1994) Topical delivery systems for azelaic acid: effect of the suspended drug in microemulsion. Pharmazie 49:72–73

    CAS  PubMed  Google Scholar 

  • Pharmacopoeia Europaea (Europaeisches Arzneibuch) (2011) Deutscher Apotheker Verlag, Govi-Verlag, Pharmazeutischer Verlag GmbH, Stuttgart, Eschborn

    Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    Article  CAS  PubMed  Google Scholar 

  • Raghavan SL, Kiepfer B, Davis AF, Kazarian SG, Hadgraft J (2001) Membrane transport of hydrocortisone acetate from supersaturated solutions; the role of polymers. Int J Pharm 221:95–105

    Article  CAS  PubMed  Google Scholar 

  • Sabale V, Vora S (2012) Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int J Pharm Invest 2:140–149

    Article  CAS  Google Scholar 

  • Sachdeva V, Bai Y, Kydonieus A, Banga AK (2013) Formulation and optimization of desogestrel transdermal contraceptive patch using crystallization studies. Int J Pharm 441(1–2):9–18

    Article  CAS  PubMed  Google Scholar 

  • Scheuplein RJ (1976) Permeability of the skin: a review of major concepts and some new developments. J Invest Dermatol 67:672–676

    Article  CAS  Google Scholar 

  • Singh S, Gajra B, Rawat M, Muthu MS (2009) Enhanced transdermal delivery of ketoprofen from bioadhesive gels. Pak J Pharm Sci 22:193–198

    CAS  PubMed  Google Scholar 

  • Stahl J, Wohlert M, Kietzmann M (2011) The effect of formulation vehicles on the in vitro percutaneous permeation of ibuprofen. BMC Pharmacol 11(12):1–5

    Google Scholar 

  • Stahl J, Blume B, Bienas S, Kietzmann M (2012) The comparability of in vitro and ex vivo studies on the percutaneous permeation of topical formulations containing Ibuprofen. Altern Lab Anim 40:91–98

    CAS  PubMed  Google Scholar 

  • Stiasny-Kolster K, Berg D, Hofmann WE, Berkels R, Grieger F, Lauterbach T, Schollmayer E, Bachmann CG (2013) Effectiveness and tolerability of rotigotine transdermal patch for the treatment of restless legs syndrome in a routine clinical practice setting in Germany. Sleep Med. doi:10.1016/j.sleep.2013.02.013, May 10; doi: pii: S1389-9457(13)00106-8

    PubMed  Google Scholar 

  • Suh H, Jun HW (1996) Physicochemical and release studies of naproxen in polymer gels. Int J Pharm 129:13–20

    Article  CAS  Google Scholar 

  • The International Pharmacopoeia (2014) 4th Supplement to the fourth edition. Monographs: dosage forms: general monographs: topical semi-solid dosage forms. http://apps.who.int/phint/en/p/docf/. Accessed 16 Oct 2014

  • Tokumura F, Yoshiura Y, Homma T, Nukatsuka H (2006) Regional differences in adhesive tape stripping of human skin. Skin Res Technol 12:178–182

    Article  PubMed  Google Scholar 

  • Uner M, Wissing SA, Yener G, Mueller RH (2005) Skin moisturizing effect and skin penetration of ascorbyl palmitate entrapped in solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) incorporated into hydrogel. Pharmazie 60:751–755

    CAS  PubMed  Google Scholar 

  • Watkinson RM, Herkenne C, Guy RH, Hadgraft J, Oliveira G, Lane ME (2009) Influence of ethanol on the solubility, ionization and permeation characteristics of ibuprofen in silicone and human skin. Skin Pharmacol Physiol 22:15–21

    Article  CAS  PubMed  Google Scholar 

  • Welin-Berger K, Neelissen JA, Bergenstahl B (2001) The effect of rheological behaviour of a topical anaesthetic formulation on the release and permeation rates of the active compound. Eur J Pharm Sci 13:309–318

    Article  CAS  PubMed  Google Scholar 

  • Wiechers JW, Kelly CL, Blease TG, Dederen JC (2004) Formulating for efficacy. Int J Cosmet Sci 26:173–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Stahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stahl, J. (2015). Dermal and Transdermal Formulations: How They Can Affect the Active Compound. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics