Skip to main content

Formation of Ion Pairs and Complex Coacervates

  • Chapter

Abstract

Over the past several decades, there have been important advances in the field of transdermal drug delivery. However, for most drugs, the successful transdermal delivery is still limited due to the barrier function of the skin. The skin, especially its outermost layer, the stratum corneum (SC), poses a formidable barrier to the penetration of exogenous substances into the skin and only allows the penetration of drugs with low molecular weight, suitable solubility in oil and water, moderate partition coefficient, and low melting point. Generally, hydrophilic ionized drugs and other drugs with unfavorable physicochemical properties cannot pass adequately the skin barrier to exert their pharmacological effect. Ion pairs and complex coacervates are effective strategies to facilitate the transdermal penetration of this type of drugs.

In this chapter, the application of ion pairs and complex coacervates in transdermal drug delivery will be introduced in two separate parts. In each part, a number of examples will be provided to illustrate the theory, classification and confirmation of ion-pair formation, and the mechanism of action of ion pairs on skin penetration enhancement of drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I et al (2011) Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem 83:1619–1636

    CAS  Google Scholar 

  • Barrow GM (1956) The nature of hydrogen bonded ion-pairs: the reaction of pyridine and carboxylic acids in chloroform. J Am Chem Soc 78:5802–5806

    Article  CAS  Google Scholar 

  • Barry BW (2001) Is transdermal drug delivery research still important today? Drug Discov Today 6:967–971

    Article  PubMed  Google Scholar 

  • Barthel J, Deser R (1994) FTIR study of ion solvation and ion-pair formation in alkaline and alkaline earth metal salt solutions in acetonitrile. J Solut Chem 32:1133–1146

    Article  Google Scholar 

  • Becker ED (2007) Hydrogen bonding. In: Harris RK, Wasylishen RE (eds) eMagRes. Wiley, Chichester

    Google Scholar 

  • Biliškov N, Kojić-Prodić B, Mali G, Molčanov K, Stare J (2011) A partial proton transfer in hydrogen bond O−H∙∙∙O in crystals of anhydrous potassium and rubidium complex chloranilates. J Phys Chem A 115:3154–3166

    Article  PubMed  Google Scholar 

  • Cheong HA, Choi HK (2002) Enhanced percutaneous absorption of piroxicam via salt formation with ethanolamines. Pharm Res 19:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Cheong HA, Choi HK (2003) Effect of ethanolamine salts and enhancers on the percutaneous absorption of piroxicam from a pressure sensitive adhesive matrix. Eur J Pharm Sci 18:149–153

    Article  CAS  PubMed  Google Scholar 

  • Diamond RM (1963) The aqueous solution behavior of large univalent ions. A new type of ion-pairing. J Phys Chem 67:2513–2517

    Article  CAS  Google Scholar 

  • Fang L, Numajiri S, Kobayashi D, Morimoto Y (2003) The use of complexation with alkanolamines to facilitate skin permeation of mefenamic acid. Int J Pharm 262:13–22

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Numajiri S, Kobayashi D, Ueda H, Nakayama K, Miyamae H et al (2004) Physicochemical and crystallographic characterization of mefenamic acid complexes with alkanolamines. J Pharm Sci 93:144–154

    Article  CAS  PubMed  Google Scholar 

  • Gilli P, Pretto L, Bertolasi V, Gilli G (2009) Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule: toward the solution of a long-lasting problem. Acc Chem Res 42:33–44

    Article  CAS  PubMed  Google Scholar 

  • Green PG, Hadgraft J, Ridout G (1989) Enhanced in vitro skin permeation of cationic drugs. Pharm Res 6:628–632

    Article  CAS  PubMed  Google Scholar 

  • Guy RH, Hadgraft J (1984) Prediction of drug disposition kinetics in skin and plasma following topical administration. J Pharm Sci 73:883–887

    Article  CAS  PubMed  Google Scholar 

  • Habeeb MM (1997) Spectroscopic studies of proton transfer equilibria in hydrogen bonded complexes. Appl Spectrosc Rev 32:103–140

    Article  CAS  Google Scholar 

  • Hudson RA, Scott RM, Vinogradov SN (1972) Hydrogen-bonded complex-ion-pair equilibriums in 3, 4-dinitrophenol-amine-aprotic solvent systems. J Phys Chem 76:1989–1993

    Article  CAS  Google Scholar 

  • Huyskens PL, Zeegers-Huyskens (1964) Molecular associations and acid-base equilibriums. J Chem Phys Phys-Chem Biol 61:81–86

    CAS  Google Scholar 

  • Kamal MA, Iimura N, Nabekura T, Kitagawa S (2007) Enhanced skin permeation of diclofenac by ion-pair formation and further enhancement by microemulsion. Chem Pharm Bull 55:368–371

    Article  CAS  PubMed  Google Scholar 

  • Kraus CA (1956) The ion-pair concept: its evolution and some application. J Phys Chem 60:129–141

    Article  CAS  Google Scholar 

  • Lee KK, Park KH, Kwon D, Choi JH, Son H, Park S et al (2011) Ion-pairing dynamics of Li+ and SCN in dimethylformamide solution: chemical exchange two-dimensional infrared spectroscopy. J Chem Phys 134:064506

    Article  PubMed  Google Scholar 

  • Lü JM, Rosokha SV, Lindeman SV, Neretin IS, Kochi JK (2005) “Separated” versus “contact” ion-pair structures in solution from their crystalline states: dynamic effects on dinitrobenzenide as a mixed-valence anion. J Am Chem Soc 127:1797–1809

    Article  PubMed  Google Scholar 

  • Ma X, Fang L, Guo J, Zhao N, He Z (2010) Effect of counter-ions and penetration enhancers on the skin permeation of flurbiprofen. J Pharm Sci 99:1826–1837

    CAS  PubMed  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Ion pair. In: Compendium of chemical terminology, 2nd edn. (the “Gold Book”). IUPAC. http://goldbook.iupac.org/I03 231.html. Accessed 19 Oct 2002.

  • Megwa SA, Cross SE, Benson HA, Roberts MS (2000a) Ion-pair formation as a strategy to enhance topical delivery of salicylic acid. J Pharm Pharmacol 52:919–928

    Article  CAS  PubMed  Google Scholar 

  • Megwa SA, Cross SE, Whitehouse MW, Benson HA, Roberts MS (2000b) Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol 52:929–940

    Article  CAS  PubMed  Google Scholar 

  • Michaels AS, Chandrasekaran K, Shaw JE (1975) Drug permeation through human skin: theory and in vitro experimental measurement. Am Inst Chem Eng J 21:985–996

    Article  CAS  Google Scholar 

  • Miller JM, Dahan A, Gupta D, Varghese S, Amidon GL (2009) Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs. J Control Release 137:31–37

    Article  CAS  PubMed  Google Scholar 

  • Nagy PI, Takacs-Novak K (2000) Theoretical and experimental study on ion-pair formation and partitioning of organic salts in octanol/water and dichloromethane/water systems. J Am Chem Soc 122:6583–6593

    Article  CAS  Google Scholar 

  • Nam SH, Xu YJ, Nam H, Jin GW, Jeong Y, An S et al (2011) Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm 419:114–120

    Article  CAS  PubMed  Google Scholar 

  • Neubert R (1989) Ion pair transport across membranes. Pharm Res 6:743–747

    Article  CAS  PubMed  Google Scholar 

  • Neubert R, Dittrich T (1989) Ampicillin ionenpaartransport im vergleich mit dem transport weiterer penicilline. Pharmazie 44:67–68

    CAS  PubMed  Google Scholar 

  • Neubert R, Fischer S (1991) Influence of lipophilic counter ions on the transport of ionizable hydrophilic drugs. J Pharm Pharmacol 43:204–206

    Article  CAS  PubMed  Google Scholar 

  • Neubert R, Fürst W, Böhm W, Dabow S (1984) Drug permeation through artificial lipid membranes. 17. The mechanism of ion pair transport. Pharmazie 39:401–403

    CAS  PubMed  Google Scholar 

  • Nogueira IR, Carneiro G, Yoshida MI, de Oliveira RB, Ferreira LA (2011) Preparation, characterization, and topical delivery of paromomycin ion pairing. Drug Dev Ind Pharm 37:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Pal D, Goswami D, Nayak SK, Chattopadhyay S, Bhattacharya S (2010) Spectroscopic and theoretical insights into the origin of Fullerene − Calix[4]pyrrole interaction. J Phys Chem A 114:6776–6786

    Article  CAS  PubMed  Google Scholar 

  • Pregosin PS (2009) NMR spectroscopy and ion pairing: measuring and understanding how ions interact. Pure Appl Chem 81:615–633

    Article  CAS  Google Scholar 

  • Ratajczak H (1972) Charge-transfer properties of the hydrogen bond. I. Theory of the enhancement of dipole moment of hydrogen-bonded systems. J Phys Chem 76:3000–3004

    Article  CAS  Google Scholar 

  • Ren C, Fang L, Li T, Wang M, Zhao L, He Z (2008) Effect of permeation enhancers and organic acids on the skin permeation of indapamide. Int J Pharm 350:43–47

    Article  CAS  PubMed  Google Scholar 

  • Simon JD, Peters KS (1982) Picosecond dynamics of ion pairs: the effect of hydrogen bonding on ion-pair intermediates. J Am Chem Soc 104:6542–6547

    Article  CAS  Google Scholar 

  • Sobczyk L, Paweła Z (1974) Infra-red spectra and dipole moments of hydrogen-bonded complexes. Part 5.—proton transfer in carboxylic acid–pyridine complexes. J Chem Soc Faraday Trans 1 70:832–838

    Article  CAS  Google Scholar 

  • Song W, Cun D, Xi H, Fang L (2012) The control of skin-permeating rate of bisoprolol by ion-pair strategy for long-acting transdermal patches. AAPS PharmSciTech 13:811–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stott PW, Williams AC, Barry BW (1996) Characterization of complex coacervates of some tricyclic antidepressants and evaluation of their potential for enhancing transdermal flux. J Control Release 41:215–227

    Article  CAS  Google Scholar 

  • Takacs-Novak K, Szasz G (1999) Ion-pair partition of quaternary ammonium drugs: the influence of counter ions of different lipophilicity, size, and flexibility. Pharm Res 16:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Zhang J, Wu J, Fang L, He Z (2009) The enhancing effect of ion-pairing on the skin permeation of glipizide. AAPS PharmSciTech 10:967–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tubbs JD, Hoffmann MM (2004) Ion-pair formation of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifyl)imide in low dielectric media. J Solut Chem 33:381–394

    Article  CAS  Google Scholar 

  • Wang ML, Fang L (2008) Percutaneous absorption of diclofenac acid and its salts from emulgel. Asian J Pharm Sci 3:131–141

    Google Scholar 

  • Wang M, Fang L, Ren C, Li T (2008) Effect of ion-pairing and enhancers on scutellarin skin permeability. J Pharm Pharmacol 60:429–435

    Article  CAS  PubMed  Google Scholar 

  • Xi H, Cun D, Wang Z, Shang L, Song W, Mu L et al (2012a) Effect of the stability of hydrogen-bonded ion pairs with organic amines on transdermal penetration of teriflunomide. Int J Pharm 436:857–861

    Article  CAS  PubMed  Google Scholar 

  • Xi H, Wang Z, Chen Y, Li W, Sun L, Fang L (2012b) The relationship between hydrogen-bonded ion-pair stability and transdermal penetration of lornoxicam with organic amines. Eur J Pharm Sci 47:325–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Fang L, Tan Z, Wu J, He ZG (2009) Influence of ion-pairing and chemical enhancers on the transdermal delivery of meloxicam. Drug Dev Ind Pharm 35:663–670

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fang, L., Xi, H., Cun, D. (2015). Formation of Ion Pairs and Complex Coacervates. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics