Advertisement

Hydrogen and Fuel Cells: Mobile Application in Aviation

  • Andreas WestenbergerEmail author
Chapter
  • 2k Downloads

Abstract

Using hydrogen as a fuel for the propulsion of large commercial passenger aircraft has the advantage that it contains about three times the energy content per weight compared to kerosene hydrogen. On the other hand the volume of hydrogen, even at cryogenic liquid state, is about four times the volume of kerosene. Additional tank weight for the storage of the cryogenic hydrogen partially balances the weight advantage again. Other applications in conjunction with fuel cell technology as energy converters achieve higher efficiencies compared to the today’s conventional technologies. Such configurations are currently applied as components for the propulsion of smaller electrically powered aircraft and electrical onboard generators at experimental level. In the case of using this technology as an onboard power generator on large commercial aircraft, it is possible to also use byproducts such as heat of reaction, process water and the low-oxygen exhaust air.

Keywords

Fuel Cell Electric Motor Internal Combustion Engine Main Engine Commercial Aircraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AC

Alternating current

ATA

Air Transport Association

APU

Auxiliary power unit

ATRU

Auto transformer rectifier unit

ATU

Auto transformer unit

CS

Certification specification

DARPA

U.S. Defense Advanced Research Projects Agency

DC

Direct current

ECS

Environmental control system

EDP

Engine driven pump

EHA

Electro-hydraulic actuator

EMA

Electromechanical actuator

EMP

Engine-driven pump

JAA

Joint Aviation Authorities

JAR

Joint aviation requirements

K.A.

Not specified (in German: keine Angabe)

MEA

Membrane electrolyte assemble

MEA

More-electric-aircraft

ODA

Oxygen depleted air

PEM

Polymer electrolyte membrane or proton exchange membrane

PTU

Power transfer unit

RAT

Ram air turbine

WAI

Wing anti-ice

References

  1. 1.
    Smolinka, T., Frauenhofer, I.S.E.: Wasserstoff aus Elektrolyse – ein technologischer Vergleich. FVS Workshop (2007)Google Scholar
  2. 2.
    Hirscher, M.: Handbook of Hydrogen Storage. Wiley, Weinheim (2010)Google Scholar
  3. 3.
    Rau, S., Dynetek Europe GmbH: Deutscher Wasserstoff-Energietag, 12–14 Nov 2003 (Essen)Google Scholar
  4. 4.
    Ziemann, J., Airbus Operations GmbH: Potential Use of Hydrogen in Air Propulsion, EQHHPP, Phase III.0-3 Final Report, May 1998Google Scholar
  5. 5.
    Tupolev: Cryogenic Aircraft. (2012). http://www.tupolev.ru/English/Show.asp?SectionID=82
  6. 6.
    Westenberger, A., Airbus Operations GmbH: Liquid Hydrogen Fuelled Aircraft – System Analysis – CRYOPLANE, Final Technical Report, 24 Sept 2003Google Scholar
  7. 7.
    N2telligence GmbH: Broschüre 2012Google Scholar
  8. 8.
    Steinberger-Wilkins, R., Lehnert, W.: Innovations in Fuel Cell Technologies RSC, Royal Society of Chemistry, 1st edn., 18 Oct 2010Google Scholar
  9. 9.
    Schwarze, M.: Flugzeugvorentwurf Bi-Fuel-und wasserstoffbetriebener Kurzstrecken-Frachtflugzeuge, Hamburg/Stuttgart im Juli 2009Google Scholar
  10. 10.
    Daniel Brewer, G.: Hydrogen Aircraft Technology. CRC Press (1991). ISBN: 0-8493-5838-8Google Scholar
  11. 11.
    Brand, J., Sampath, S., Shum, F., Pratt & Whitney Canada, Bayt, R.L., United Technologies Research Center, Cohen, J., Pratt & Whitney: Potential Use of Hydrogen in Air Propulsion, AIAA 2003-2879, 17 July 2003Google Scholar
  12. 12.
    Seeckt, K.: Conceptual design and investigation of hydrogen-fueled regional freighter aircraft. Licentiate Thesis Stockholm, Sweden (2010)Google Scholar
  13. 13.
    Arendt, M.: Vergleich des Einflusses der Sekundärleistungsentnahme auf den spezifischen Kraftstoffverbrauch unangepaßter und angepaßter Triebwerke. Große Studienarbeit, TU Hamburg-Harburg, Arbeitsbereich Flugzeug-Systemtechnik, Hamburg, Juli 2005Google Scholar
  14. 14.
    Boeing Media Release, St. Louis, 16 Sept 2010Google Scholar
  15. 15.
  16. 16.
    http://www.airliners.de/technik/forschungundentwicklung/wie-ein-taxibot-funktioniert/27627. Wie funktioniert ein Taxibot? Stand: 19 July 2012 – 18:31 UTC+1
  17. 17.
  18. 18.
    Breit, J., Szydlo-Moore, J.: The Boeing Company, Seattle, Washington, 98124–2207; Fuel cells for commercial transport airplanes needs and opportunities. AIAA 2007–1390; 45th AIAA aerospace sciences meeting and exhibit, 8–11 Jan 2007, Reno, NevadaGoogle Scholar
  19. 19.
  20. 20.
    Faubladier, F., Rambaud, D.: Aeroconseil, Soc Survey Report, European Aviation Safety Agency, Ref. EASA.2008/1Google Scholar
  21. 21.
    Chilenski, J.J.: Software development under DO-178B, Jan 2002 (Associate Technical Fellow, Airborne Software Engineering, Boeing Commercial Airplanes)Google Scholar
  22. 22.
  23. 23.
    http://www.aviationweek.com/, 29 July 12, “Inside Boeing’s Phantom Eye”, Posted by Graham Warwick 3:40 PM on Dec 22, 2010
  24. 24.
    Aeropack: http://www.hes.sg/products.html, 27 Jan 2013, 22:33 UTC+1
  25. 25.
    Horizon Hyfish: http://www.horizonfuelcell.com/hyfish.htm, 27 Jan 2013, 22:22 UTC+1
  26. 26.
    ICAO: International Standards and recommended Practices - Environmental Protection – Annex 16 to the Convention on international Civil Aviation, Volume II, Aircraft Engine Emissions, Second Edition – 20 Nov 2008 - Start- und Landezyklus (Landing and Takeoff Cycle, LTO) (1993)Google Scholar
  27. 27.
    Fink, R.: Untersuchungen zu LPP Flugtriebwerksbrennkammern unter erhöhtem Druck. Technische Universität München (2001)Google Scholar
  28. 28.
    Wiesner, W.: Die Brennstoffzelle, Institut für Landmaschinentechnik und Regenerative EnergienGoogle Scholar
  29. 29.
  30. 30.
    Honeywell, Produktbeschreibung, APU 131-9[A] Auxiliary Power Unit, April 2013Google Scholar
  31. 31.
  32. 32.
    OPEC Secretariat: World Oil Outlook 2011, Helferstorferstrasse 17, A-1010 Vienna. www.opec.org, ISBN: 978-3-9502722-2-2
  33. 33.
    Römelt, S., Cassidian, W.P.: MEA-Vortrag, eaa-Koloquium (2010)Google Scholar
  34. 34.
    European Aviation Safety Agency: Certification specifications and acceptable means of compliance for large aeroplanes – CS 25.1351(d) RAT Amendment 12; 13 July 2012Google Scholar
  35. 35.
  36. 36.
  37. 37.
    European Aviation Safety Agency 17 July 2008, R.F00801, Notice of Proposed Amendment (NPA) NO 200819Google Scholar
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    Noll, T.E., NASA Langley Research Center, Brown, J.M., National Oceanic and Atmospheric Administration, Perez-Davis, M.E., NASA Glenn Research Center, Ishmael, S.D., NASA Dryden Flight Research Center, Tiffany, G.C., NASA Ames Research Center, Gaier, M., NASA Headquarters: Investigation of the Helios Prototype Aircraft, Mishap Volume I Mishap Report, Jan 2004. http://www.nasa.gov/pdf/64317main_helios.pdf, 07 June 2013, 12:19 UTC+1

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Airbus Operations GmbHHamburgGermany

Personalised recommendations