Automobile Application

  • Christian MohrdieckEmail author
  • Massimo Venturi
  • Katrin Breitrück
  • Herbert Schulze


The responsible and protective usage of energy resources and the reduction of pollutant emissions including greenhouse gas emissions are not only desired worldwide, but due to continuously increasing legal requirements an undisputable necessity. Therefore, future energy carriers and energy converters will have to be energy-efficient to the maximum possible extent and the lowest possible in emissions if not zero-emission on the one hand. On the other hand, it will be required to make fluctuating energies like wind and solar which become a more and more important part of the energy system in an optimal manner. Due to the “Energiewende”, the described challenge is of specific and early importance for Germany. This is true for stationary and portable applications as well as for the transportation and automotive sector.


Fuel Cell Metal Hydride Bipolar Plate Fuel Cell System Fuel Cell Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Deutsche Bundesregierung: Eckpunktepapier Beschluss (2011)Google Scholar
  2. 2.
    Calculated with TREMOD 5.25c, Trend-Szenario, Inlandsbilanz, DaimlerGoogle Scholar
  3. 3.
    D. Stolten, T. Grube, J. Mergel: Beitrag elektrochemischer Energietechnik zur Energiewende. VDI-Berichte Nr. 2183, 2012 - 210Google Scholar
  4. 4.
  5. 5.
    COM(2012) 393 final “Proposal for a Regulation of the European Parliament and of the Council Amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars”, European Commission, Brussels, 2012Google Scholar
  6. 6.
  7. 7.
    Erdölprognose Prognose IEAGoogle Scholar
  8. 8.
    Energy Watch Group. Wikipedia/Globales ÖlfördermaximumGoogle Scholar
  9. 9.
    Auto Motor Sport: Sonderheft Edition n. 3 ISSN: 0940-3833Google Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Daimler Chrysler; Faszination Forschung – Drei Jahrzehnte Daimler-Benz Forschung, p. 44, 49. ISBN: 3-7977-0451-8Google Scholar
  18. 18.
    Povel, R., Töpler, J., Withalm, G., Halene, C.: Hydrogen drive in field testing. Proceedings of the 5th World Hydrogen Energy Conference, pp. 1563–1577. Toronto (1984)Google Scholar
  19. 19.
    Wasserstoff in der Fahrzeugtechnik; Eichleder, M. Klell ATZGoogle Scholar
  20. 20.
    JRC/EUCAR/CONCAWE: Well-to-Wheels Report (2004)Google Scholar
  21. 21.
  22. 22.
    Specht, M., Sterner, M.: Regeneratives Methan in einem künftigen Erneuerbare-Energie-System. Vortrag Messe Stuttgart. 11.02.2011Google Scholar
  23. 23.
    WTT: LBST: Assessment and documentation of selected aspects of transportation fuel pathways. TTW: EUCAR PISI (Port Injection Spark Ignition) CNG Fahrzeug für 2010, Daimler (2010)Google Scholar
  24. 24.
    Kramer, M.A., Heywood, J.B.: A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet. Society Automotive Engineering, 2008-01-0459Google Scholar
  25. 25.
    Mohrdieck, C., Schulze, H., Wöhr, M.: Brennstoffzellenantriebsysteme.In: Braess, H.-H., Seiffert, U. (Hrsg.) Vieweg Handbuch für Kraftfahrzeugtechnik, 6. Auflage (2011)Google Scholar
  26. 26.
    Wind, J., Prenninger, P., Essling, R.-P., Ravello, V., Corbet, A.: HYSYS Publishable Final Activity Report. Revision 0.2 (2012)Google Scholar
  27. 27.
  28. 28.
    Miko Kizaki –Toyota: Development of New Fuel Cell System for Mass Production. EVS 26Google Scholar
  29. 29.
    Vielstich, W., Lamm, A., Gasteiger, H.A.: Handbook of Fuel Cells, vol. 1, Chap. 4, p. 26ff. Wiley, New York (2003)Google Scholar
  30. 30.
    Venturi, M., Sang, J.: Air Supply System for Automotive Fuel Cell Application. Society Automotive Engineering, 2012-01-1225Google Scholar
  31. 31.
    Honda FCX with breakthrough fuel cell stack proves its cold-start performance capabilities in public test. Torrance, CA, 27 Feb, 2004.
  32. 32.
    Manabe, K., Naganuma, Y., Nonobe, Y., Kizaki, M., Ogawa-Toyota, T.: Development of Fuel Cell Hybrid Vehicle Rapid Start-up from Sub-freezing Temperatures. SAE, 2010-01-1092Google Scholar
  33. 33.
    Ikezoe, K., Tabuchi, Y., Kagami, F., Nishimura-Nissan, H.: Development of an FCV with a New FC Stack for Improved Cold Start Capability. SAE 2010-01-1093Google Scholar
  34. 34.
    Lamm, A., et al.: Technical Status and Future Prospectives for PEM Fuel Cell Systems at DaimlerChrysler. EVS 21Google Scholar
  35. 35.
    FC Award 2007. NuCellSys GmbH: Zuverlässiger Gefrierstart eines Brennstoffzellensystems für den Pkw-Einsatz. f-cell Award Gold: NuCellSys GmbH.
  36. 36.
    Züttel, A., Borgschulte, A., Schlapbach, L. (eds.): Hydrogen as a Future Energy Carrier, 1. Aufl. Wiley, Weinheim (2008)Google Scholar
  37. 37.
    Maus, S.: Modellierung und Simulation der Betankung Fahrzeugbehältern mit komprimiertem Wasserstoff. Dissertation, VDI Fortschrittsberichte Reihe 3, Nr. 879 (2007)Google Scholar
  38. 38.
    Maus, S., Hapke, J., Ranong, C.N., Wüchner, E., Friedlmeier, G., Wenger, D.: Filling procedure for vehicles with compressed hydrogen tanks.
  39. 39.
    Töpler, J., Feucht, K.: Results of a Fleet Test with Metal Hydride Motor Cars. Daimler-Benz AG, Stuttgart (1989)Google Scholar
  40. 40.
    Hovland, V., Pesaran, A., Mohring, R., Eason, I., Schaller, R., Tran, D., Smith, T., Smith, G.: Water and Heat Balance in a Fuel Cell Vehicle With a Sodium Borohydride Hydrogen Fuel Processor. SAE Technical Paper 2003-01-2271Google Scholar
  41. 41.
    Wenger, D.: Metallhydridspeicher zur Wasserstoffversorgung und Kühlung von Brennstoffzellenfahrzeugen. Dissertation, Universität Ulm (2009)Google Scholar
  42. 42.
    Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  43. 43.
    Chambers, A., Park, C., Baker, R.T.K., Rodriguez, N.M.: Hydrogen Storage in Graphite Nanofibers. J. Phys. Chem. B 102, 4253–4256 (1998)CrossRefGoogle Scholar
  44. 44.
    Hirscher, M. (Hrsg.): Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Weinheim: Wiley (2010)Google Scholar
  45. 45.
    Broom, D.P.: Hydrogen Storage Materials: The Characterization of Their Storage Properties. Springer, London (2011)CrossRefGoogle Scholar
  46. 46.
    U.S. Department of Energy Hydrogen Program: Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications, 30 Oct 2006. Revised June 2008Google Scholar
  47. 47.
    Verkehrswirtschaftliche Energiestrategie (VES). 3. Statusbericht der Task Force an das Steering Committee, Aug 2007Google Scholar
  48. 48.
    Mohrdieck, C., Schamm, R., Zimmer, S.E., Nitsche, C.: DaimlerChrysler’s Global Operations of Zero-Emission Vehicle Fleets. Convergence 2006Google Scholar
  49. 49.
    Pressemitteilung Mercedes Benz. Eco-friendly Mercedes-Benz fuel cell buses at the World Economic Forum in Davos, 23 Jan 2013Google Scholar
  50. 50.
  51. 51.
  52. 52.
    Omnibus Brasileiro a Hidrogenio. Brasilian Fuel Cell Bus Project. Launch eventGoogle Scholar
  53. 53.
    Venturi, M., Martin, A.: Liquid Fuelled APU Fuel Cell System for Truck Application. Society Automotive Engineering, 2001-01-2716Google Scholar
  54. 54.
    Solid Oxide Fuel Cell Auxiliary Power Unit: Delphi Program Overview Essential Power Systems Workshop, 12–13th Dec 2001Google Scholar
  55. 55.
    Venturi, M., Smith, S., Bell, S., Kallio, E.: Recent Results on Liquid Fuelled APU for Truck Application. Society Automotive Engineering, 2003-01-0266Google Scholar
  56. 56.
    Brodrick, C.J., Truck Idling Trends: Results of a Pilot Survey in Northern California. Society Automotive Engineering, 2001-01-2828Google Scholar
  57. 57.
    Analysis of Technologies Options to Reduce the Fuel Consumption of Idling Trucks: Center for Transportation Research Argonne National Laboratory Operated by the University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of EnergyGoogle Scholar
  58. 58.
    Bodrick, C.J., et al.: Potential benefit of utilizing fuel cell auxiliary power units in lieu of heavy duty truck engine idling, Nov 2001Google Scholar
  59. 59.
    The Maintenance Council: Analysis of cost from idling and parasitic devices for heavy duty truck. Recommended Procedure. American Truck Association, Alexandria, VA (1995)Google Scholar
  60. 60.
    Venturi, M., zur Megede, D., Keppeler, B., Dobbs, H., Kallio, E.: Synthetic Hydrocarbon Fuel for APU Application: The Fuel Processor System. Society Automotive Engineering, 2003-01-0267Google Scholar
  61. 61.
    Lim, T., Venturi, M., Kallio, E.: Vibration and Shock Considerations in the Design of a Truck-Mounted Fuel Cell APU System. Society Automotive Engineering, 2002-01-3050Google Scholar
  62. 62.
    Gavalas, G.R., Moore, N.R., Voecks, G.E., South Coast Air Quality Management District, Jet Propulsion Laboratory, California Institute of Technology, et al.: Fuel Cell Locomotive Development and Demonstration Program, Phase I: Systems Definition: Final Report; prepared for South Coast Air Quality Management District by Jet Propulsion Laboratory, California Institute of Technology, 1995Google Scholar
  63. 63.
    Pernicini, B., Steele, B., Venturi, M.: Feasibility study on fuel cell locomotive. European Commission DGXII. Contract n. JOE3-CT98-2002Google Scholar
  64. 64.
    The Hydrogen & Fuel Cell Letter: December 2012, vol. 27, no. 12. ISSN: 1080-8019Google Scholar
  65. 65.
  66. 66.
  67. 67.
    The Hydrogen & Fuel Cell Letter: January 2013, vol. 28, no. 2. ISSN 1080-8019Google Scholar
  68. 68.
    Kircher, O., Brunner, T.: Advances in cryo-compressed hydrogen vehicle storage. FISITA (2010). F2010-A-018Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Mohrdieck
    • 1
    Email author
  • Massimo Venturi
    • 1
  • Katrin Breitrück
    • 1
  • Herbert Schulze
    • 1
  1. 1.Daimler AGKirchheim/Teck-NabernGermany

Personalised recommendations