Skip to main content

Automobile Application

  • Chapter
Hydrogen and Fuel Cell

Abstract

The responsible and protective usage of energy resources and the reduction of pollutant emissions including greenhouse gas emissions are not only desired worldwide, but due to continuously increasing legal requirements an undisputable necessity. Therefore, future energy carriers and energy converters will have to be energy-efficient to the maximum possible extent and the lowest possible in emissions if not zero-emission on the one hand. On the other hand, it will be required to make fluctuating energies like wind and solar which become a more and more important part of the energy system in an optimal manner. Due to the “Energiewende”, the described challenge is of specific and early importance for Germany. This is true for stationary and portable applications as well as for the transportation and automotive sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsche Bundesregierung: Eckpunktepapier Beschluss (2011)

    Google Scholar 

  2. Calculated with TREMOD 5.25c, Trend-Szenario, Inlandsbilanz, Daimler

    Google Scholar 

  3. D. Stolten, T. Grube, J. Mergel: Beitrag elektrochemischer Energietechnik zur Energiewende. VDI-Berichte Nr. 2183, 2012 - 210

    Google Scholar 

  4. http://www.arb.ca.gov/msprog/zevprog/zevprog.htm

  5. COM(2012) 393 final “Proposal for a Regulation of the European Parliament and of the Council Amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars”, European Commission, Brussels, 2012

    Google Scholar 

  6. http://ec.europa.eu/research/fch/pdf/a_portfolio_of_power_trains_for_europe_a_fact_based__analysis.pdf

  7. Erdölprognose Prognose IEA

    Google Scholar 

  8. Energy Watch Group. Wikipedia/Globales Ölfördermaximum

    Google Scholar 

  9. Auto Motor Sport: Sonderheft Edition n. 3 ISSN: 0940-3833

    Google Scholar 

  10. http://www.spiegel.de/auto/werkstatt/brennstoffzellen-marathon-opel-auf-tournee-a-297209.html. Visited 30.01.2013

  11. http://www.scandinavianhydrogen.org/h2moves%5D/news/the-european-hydrogen-road-tour-kicks-off

  12. http://cafcp.org/

  13. http://www.cleanenergypartnership.de

  14. http://www.jari.or.jp/jhfc/e/index.html

  15. http://www.fch-ju.eu/

  16. http://www.forum-elektromobilitaet.de/flycms/de/web/232/-/NOW+−+Nationale+Organisation+Wasserstoff−+und+Brennstoffzellentechnologie.html

  17. Daimler Chrysler; Faszination Forschung – Drei Jahrzehnte Daimler-Benz Forschung, p. 44, 49. ISBN: 3-7977-0451-8

    Google Scholar 

  18. Povel, R., Töpler, J., Withalm, G., Halene, C.: Hydrogen drive in field testing. Proceedings of the 5th World Hydrogen Energy Conference, pp. 1563–1577. Toronto (1984)

    Google Scholar 

  19. Wasserstoff in der Fahrzeugtechnik; Eichleder, M. Klell ATZ

    Google Scholar 

  20. JRC/EUCAR/CONCAWE: Well-to-Wheels Report (2004)

    Google Scholar 

  21. http://www.optiresource.org/en/home.html

  22. Specht, M., Sterner, M.: Regeneratives Methan in einem künftigen Erneuerbare-Energie-System. Vortrag Messe Stuttgart. 11.02.2011

    Google Scholar 

  23. WTT: LBST: Assessment and documentation of selected aspects of transportation fuel pathways. TTW: EUCAR PISI (Port Injection Spark Ignition) CNG Fahrzeug für 2010, Daimler (2010)

    Google Scholar 

  24. Kramer, M.A., Heywood, J.B.: A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet. Society Automotive Engineering, 2008-01-0459

    Google Scholar 

  25. Mohrdieck, C., Schulze, H., Wöhr, M.: Brennstoffzellenantriebsysteme.In: Braess, H.-H., Seiffert, U. (Hrsg.) Vieweg Handbuch für Kraftfahrzeugtechnik, 6. Auflage (2011)

    Google Scholar 

  26. Wind, J., Prenninger, P., Essling, R.-P., Ravello, V., Corbet, A.: HYSYS Publishable Final Activity Report. Revision 0.2 (2012)

    Google Scholar 

  27. http://www.fch-ju.eu/sites/default/files/20121029%20Urban%20buses%2C%20alternative%20powertrains%20for%20Europe%20-%20Final%20report.pdf

  28. Miko Kizaki –Toyota: Development of New Fuel Cell System for Mass Production. EVS 26

    Google Scholar 

  29. Vielstich, W., Lamm, A., Gasteiger, H.A.: Handbook of Fuel Cells, vol. 1, Chap. 4, p. 26ff. Wiley, New York (2003)

    Google Scholar 

  30. Venturi, M., Sang, J.: Air Supply System for Automotive Fuel Cell Application. Society Automotive Engineering, 2012-01-1225

    Google Scholar 

  31. Honda FCX with breakthrough fuel cell stack proves its cold-start performance capabilities in public test. Torrance, CA, 27 Feb, 2004. http://world.honda.com/news/2004/4040227FCX/

  32. Manabe, K., Naganuma, Y., Nonobe, Y., Kizaki, M., Ogawa-Toyota, T.: Development of Fuel Cell Hybrid Vehicle Rapid Start-up from Sub-freezing Temperatures. SAE, 2010-01-1092

    Google Scholar 

  33. Ikezoe, K., Tabuchi, Y., Kagami, F., Nishimura-Nissan, H.: Development of an FCV with a New FC Stack for Improved Cold Start Capability. SAE 2010-01-1093

    Google Scholar 

  34. Lamm, A., et al.: Technical Status and Future Prospectives for PEM Fuel Cell Systems at DaimlerChrysler. EVS 21

    Google Scholar 

  35. FC Award 2007. NuCellSys GmbH: Zuverlässiger Gefrierstart eines Brennstoffzellensystems für den Pkw-Einsatz. f-cell Award Gold: NuCellSys GmbH. www.f-cell.de/deutsch/award/preistraeger/jahr-2007

  36. Züttel, A., Borgschulte, A., Schlapbach, L. (eds.): Hydrogen as a Future Energy Carrier, 1. Aufl. Wiley, Weinheim (2008)

    Google Scholar 

  37. Maus, S.: Modellierung und Simulation der Betankung Fahrzeugbehältern mit komprimiertem Wasserstoff. Dissertation, VDI Fortschrittsberichte Reihe 3, Nr. 879 (2007)

    Google Scholar 

  38. Maus, S., Hapke, J., Ranong, C.N., Wüchner, E., Friedlmeier, G., Wenger, D.: Filling procedure for vehicles with compressed hydrogen tanks. http://www.elsevier.com

  39. Töpler, J., Feucht, K.: Results of a Fleet Test with Metal Hydride Motor Cars. Daimler-Benz AG, Stuttgart (1989)

    Google Scholar 

  40. Hovland, V., Pesaran, A., Mohring, R., Eason, I., Schaller, R., Tran, D., Smith, T., Smith, G.: Water and Heat Balance in a Fuel Cell Vehicle With a Sodium Borohydride Hydrogen Fuel Processor. SAE Technical Paper 2003-01-2271

    Google Scholar 

  41. Wenger, D.: Metallhydridspeicher zur Wasserstoffversorgung und Kühlung von Brennstoffzellenfahrzeugen. Dissertation, Universität Ulm (2009)

    Google Scholar 

  42. Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  43. Chambers, A., Park, C., Baker, R.T.K., Rodriguez, N.M.: Hydrogen Storage in Graphite Nanofibers. J. Phys. Chem. B 102, 4253–4256 (1998)

    Article  Google Scholar 

  44. Hirscher, M. (Hrsg.): Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Weinheim: Wiley (2010)

    Google Scholar 

  45. Broom, D.P.: Hydrogen Storage Materials: The Characterization of Their Storage Properties. Springer, London (2011)

    Book  Google Scholar 

  46. U.S. Department of Energy Hydrogen Program: Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications, 30 Oct 2006. Revised June 2008

    Google Scholar 

  47. Verkehrswirtschaftliche Energiestrategie (VES). 3. Statusbericht der Task Force an das Steering Committee, Aug 2007

    Google Scholar 

  48. Mohrdieck, C., Schamm, R., Zimmer, S.E., Nitsche, C.: DaimlerChrysler’s Global Operations of Zero-Emission Vehicle Fleets. Convergence 2006

    Google Scholar 

  49. Pressemitteilung Mercedes Benz. Eco-friendly Mercedes-Benz fuel cell buses at the World Economic Forum in Davos, 23 Jan 2013

    Google Scholar 

  50. http://www.fuelcellbus.com/

  51. http://www.fuelcells.org/wp-content/uploads/2012/02/fcbuses-world.pdf

  52. Omnibus Brasileiro a Hidrogenio. Brasilian Fuel Cell Bus Project. Launch event

    Google Scholar 

  53. Venturi, M., Martin, A.: Liquid Fuelled APU Fuel Cell System for Truck Application. Society Automotive Engineering, 2001-01-2716

    Google Scholar 

  54. Solid Oxide Fuel Cell Auxiliary Power Unit: Delphi Program Overview Essential Power Systems Workshop, 12–13th Dec 2001

    Google Scholar 

  55. Venturi, M., Smith, S., Bell, S., Kallio, E.: Recent Results on Liquid Fuelled APU for Truck Application. Society Automotive Engineering, 2003-01-0266

    Google Scholar 

  56. Brodrick, C.J., et.al: Truck Idling Trends: Results of a Pilot Survey in Northern California. Society Automotive Engineering, 2001-01-2828

    Google Scholar 

  57. Analysis of Technologies Options to Reduce the Fuel Consumption of Idling Trucks: Center for Transportation Research Argonne National Laboratory Operated by the University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy

    Google Scholar 

  58. Bodrick, C.J., et al.: Potential benefit of utilizing fuel cell auxiliary power units in lieu of heavy duty truck engine idling, Nov 2001

    Google Scholar 

  59. The Maintenance Council: Analysis of cost from idling and parasitic devices for heavy duty truck. Recommended Procedure. American Truck Association, Alexandria, VA (1995)

    Google Scholar 

  60. Venturi, M., zur Megede, D., Keppeler, B., Dobbs, H., Kallio, E.: Synthetic Hydrocarbon Fuel for APU Application: The Fuel Processor System. Society Automotive Engineering, 2003-01-0267

    Google Scholar 

  61. Lim, T., Venturi, M., Kallio, E.: Vibration and Shock Considerations in the Design of a Truck-Mounted Fuel Cell APU System. Society Automotive Engineering, 2002-01-3050

    Google Scholar 

  62. Gavalas, G.R., Moore, N.R., Voecks, G.E., South Coast Air Quality Management District, Jet Propulsion Laboratory, California Institute of Technology, et al.: Fuel Cell Locomotive Development and Demonstration Program, Phase I: Systems Definition: Final Report; prepared for South Coast Air Quality Management District by Jet Propulsion Laboratory, California Institute of Technology, 1995

    Google Scholar 

  63. Pernicini, B., Steele, B., Venturi, M.: Feasibility study on fuel cell locomotive. European Commission DGXII. Contract n. JOE3-CT98-2002

    Google Scholar 

  64. The Hydrogen & Fuel Cell Letter: December 2012, vol. 27, no. 12. ISSN: 1080-8019

    Google Scholar 

  65. http://pinktentacle.com/2006/10/jr-tests-fuel-cell-hybrid-train/

  66. www.zemships.eu

  67. The Hydrogen & Fuel Cell Letter: January 2013, vol. 28, no. 2. ISSN 1080-8019

    Google Scholar 

  68. Kircher, O., Brunner, T.: Advances in cryo-compressed hydrogen vehicle storage. FISITA (2010). F2010-A-018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mohrdieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohrdieck, C., Venturi, M., Breitrück, K., Schulze, H. (2016). Automobile Application. In: Töpler, J., Lehmann, J. (eds) Hydrogen and Fuel Cell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44972-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44972-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44971-4

  • Online ISBN: 978-3-662-44972-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics