Advertisement

Polymer Electrolyte Membrane Fuel Cells

  • Ludwig Jörissen
  • Jürgen GarcheEmail author

Abstract

Polymer Electrolyte membrane Fuel Cells (PEFC) are used to power uninterruptible power supplies, combined heat and power generation systems, vehicles for materials handling as well as electric vehicles, busses and light duty road vehicles. This contribution gives a short introduction into the working principles of PEFC as well as the materials and components used.

Fundamental properties of the materials such as polymer electrolyte membranes, catalysts and gas diffusion layers making up the so called Membrane Electrode Assembly (MEA) as well as requirements to bipolar plates and sealing concepts necessary for stack integration are discussed.

The influence of platinum loading on overall stack cost will be discussed using a simple cost model based on a recent cost analysis by DoE.

Finally, a differentiation to other fuel cell technologies will be given.

Keywords

Fuel Cell Oxygen Reduction Reaction Catalyst Layer Membrane Electrode Assembly Polymer Electrolyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Merle, G., Wessling, M., Nijmeijer, K.: J. Membr. Sci. 377, 1–35 (2011)CrossRefGoogle Scholar
  2. 2.
    Couture, G., Alaaeddine, A., Boschet, F., Ameduri, B.: Prog. Polym. Sci. 36, 1521–1557 (2011)CrossRefGoogle Scholar
  3. 3.
    Merlo, L., Ghielmi, A., Arcella V.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, vol. 2, pp. 680–699, revised 2014. Elsevier, Amsterdam (2009). doi: 10.1016/B978-044452745-5.00930-8 Google Scholar
  4. 4.
    Bocarsly, A.B., Niangar, E.V.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, vol. 2, pp. 724–733, revised 2013. Elsevier, Amsterdam (2009). doi: 10.1016/B978-044452745-5.00232-X Google Scholar
  5. 5.
    Heinzel, A., Bandlamudi, G., Lehnert, W.: Reference Module in Chemistry, Molecular Science and Chemical Engineering. Elsevier, Amsterdam (2014). doi: 10.1016/B978-409547-2.11192-8, last viewed December 2014
  6. 6.
    Barbir, F.: PEM Fuel Cells, Theory and Practice, 2nd edn. Elsevier, Burlington, MA (2013)Google Scholar
  7. 7.
    Alberti, G.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, vol. 2, pp. 650–666. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  8. 8.
    Sanchez, J.-Y., Iojoiu, C., Alloin, F., Guindet, J., Leprêtre, J.-C.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, vol. 2, pp. 700–715, revised 2014. Elsevier, Amsterdam (2009). doi: 10.1016/B978-044452745-5.00887-X Google Scholar
  9. 9.
    Zhang, J. (ed.): PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London (2008)Google Scholar
  10. 10.
    Mauritz, K.A., Moore, R.B.: Chem. Rev. 104, 4535–4585 (2004)CrossRefGoogle Scholar
  11. 11.
    Hsu, W.Y., Gierke, T.D.: In: Eisenberg, A., Yeager, H.L. (eds.) Perfluorinated Ionomer Membranes (chapter 13). ACS Symposium Series No. 180. American Chemical Society, Washington, DC (1982)Google Scholar
  12. 12.
    Hsu, W.Y., Gierke, T.D.: J. Membr. Sci. 13, 307 (1983)CrossRefGoogle Scholar
  13. 13.
    Gebel, G.: Polymer 41, 5829 (2000)CrossRefGoogle Scholar
  14. 14.
    Zawodzinski, T.A., Deroin, C., Radzinski, S., Sherman, R.J., Smith, V.T., Springer, T.E., Gottesfeld, S.: J. Electrochem. Soc. 140, 1041–1047 (1993)CrossRefGoogle Scholar
  15. 15.
    Bass, M., Freger, V.: Polymer 49, 497–506 (2008)CrossRefGoogle Scholar
  16. 16.
    Jeck, S., Scharfer, P., Kind, M.: J. Membr. Sci. 373, 74–79 (2011)CrossRefGoogle Scholar
  17. 17.
    LaConti, A.B., Hamdan, M., McDonal, R.C.: In: Vielstich, W., Lamm, A., Gasteiger, H. (eds.) Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3. Wiley, New York, NY (2003)Google Scholar
  18. 18.
    Liu, H., Gasteiger, H.A., LaConti, A.B., Zhang, J.: ECS Trans. 1, 283–293 (2006)CrossRefGoogle Scholar
  19. 19.
    Cipolini, N.E.: ECS Trans. 11, 1071–1082 (2007)CrossRefGoogle Scholar
  20. 20.
    Prabhakaran, V., Arges, C.G., Ramani, V.: PNAS 109, 1029–1034 (2012)CrossRefGoogle Scholar
  21. 21.
    D’Urso, C., Oldani, C., Baglio, V., Merlo, L., Aricò, A.S.: J. Power Sources 272, 753–758 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhu, Y., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W.Z., Zhang, Y.: J. Membr. Sci. 432, 66–72 (2013)CrossRefGoogle Scholar
  23. 23.
    Gottesfeld, S.: In: Koper, M.T.M. (ed.) Fuel Cell Catalysis, a Surface Science Approach, pp. 1–30. Wiley, Hoboken (2009)Google Scholar
  24. 24.
    Petrow, H.G., Allen, R.J.: US Patent No. 4,044,193 (1977)Google Scholar
  25. 25.
    Raistrick, I.: Diaphragms, Separators and Ion Exchange Membrane, vol. 86, pp. 172–178. The Electrochemical Society, Pennington, NJ (1986)Google Scholar
  26. 26.
    Wilson, M.S., Gottesfeld, S.: J. Electrochem. Soc. 139, L28–L30 (1992)CrossRefGoogle Scholar
  27. 27.
    Springer, T.E., Wilson, M.S., Gottesfeld, S.: J. Electrochem. Soc. 140, 3513–3526 (1993)CrossRefGoogle Scholar
  28. 28.
    Mukerjee, S., Srinivasan, S.: J. Electroanal. Chem. 357, 201–224 (1993)CrossRefGoogle Scholar
  29. 29.
    Mukerjee, S., Srinivasan, S., Soriaga, M.P., McBreen, J.: J. Electrochem. Soc. 142, 1409–1422 (1995)CrossRefGoogle Scholar
  30. 30.
    Zhang, J., Mo, Y., Vukmirovic, M.B., Klie, R., Sasaki, K., Adzic, R.R.: J. Phys. Chem. B 108, 10955–10964 (2004)CrossRefGoogle Scholar
  31. 31.
    Stahl, J.B., Debe, M.K., Coleman, P.L.: J. Vac. Sci. Technol. A 14, 1761–1765 (1996)CrossRefGoogle Scholar
  32. 32.
    Sheng, W., Gasteiger, H.A., Shao-Horn, Y.: J. Electrochem. Soc. 157, B1529–B1536 (2010)CrossRefGoogle Scholar
  33. 33.
    Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U.: J. Electrochem. Soc. 152, J23 (2005)CrossRefGoogle Scholar
  34. 34.
    Markovic, N.M., Ross, P., Jr.: In: Wiekowski, A. (ed.) Interfacial Electrochemistry: Theory, Experiment and Applications, pp. 821–842. Dekker, New York, NY (1999)Google Scholar
  35. 35.
    Borup, R., et al.: Chem. Rev. 107, 3904–3951 (2007)CrossRefGoogle Scholar
  36. 36.
    Yang, D., Ma, J., Quiao, J.: In: Li, H., Knights, S., Shi, Z., van Zee, J.W., Zhang, J. (eds.) Proton Exchange Membrane Fuel Cells, Contamination and Mitigation Strategies, pp. 115–150. CRC Press, Boca Raton, FL (2010)Google Scholar
  37. 37.
    Oetjen, H.F., Schmidt, V.M., Stimming, U., Trily, F.: J. Electrochem. Soc. 143, 3838–3842 (1996)CrossRefGoogle Scholar
  38. 38.
    Yang, C., Costamagna, P., Srinivasan, S.: J. Power Sources 103, 1–9 (2001)CrossRefGoogle Scholar
  39. 39.
    Gottesfeld, S., Pafford, J.: J. Electrochem. Soc. 135, 2651–2652 (1988)CrossRefGoogle Scholar
  40. 40.
    Carette, L.P.L., Friedrich, K.A., Huber, M., Stimming, U.: Phys. Chem. Chem. Phys. 3, 320–324 (2001)CrossRefGoogle Scholar
  41. 41.
    Ralph, T.R., Hogarth, M.P.: Platin. Met. Rev. 46, 117–135 (2002)Google Scholar
  42. 42.
    Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., Liu, Z.-S., Wang, H., Shen, J.: J. Power Sources 165, 739–756 (2007)CrossRefGoogle Scholar
  43. 43.
    Imamura, D., Hashimasa, Y.: ECS Trans. 11, 853–862 (2007)CrossRefGoogle Scholar
  44. 44.
    Soto, H.J., Lee, W.K., van Zee, J.W., Murthy, M.: Electrochem. Solid-State Lett. 6, A133–A135 (2003)CrossRefGoogle Scholar
  45. 45.
    Halseid, R., Heinen, M., Jusys, Z., Behm, R.J.: J. Power Sources 176, 435–443 (2008)CrossRefGoogle Scholar
  46. 46.
    Halseid, R.: J. Electrochem. Soc. 151, A381–A388 (2004)CrossRefGoogle Scholar
  47. 47.
    Markovic, N.M., Schmid, T.J., Stamenkovic, V., Ross, P.N.: Fuel Cells 1, 105–116 (2001)CrossRefGoogle Scholar
  48. 48.
    Yuan, X.Z., Li, H., Yu, Y., Jiang, M., Quian, W., Zhang, S., Wang, H., Wessel, S., Cheng, T.T.H.: Int. J. Hydrogen Energy 37, 12464–12473 (2012)CrossRefGoogle Scholar
  49. 49.
    Xu, Y., Shao, M., Mavriakakis, M., Adzic, R.R.: In: Koper, M.T.M. (ed.) Fuel Cell Catalysis, a Surface Science Approach, pp. 271–315. Wiley, Hoboken, NJ (2009)Google Scholar
  50. 50.
    Bezerra, C.W.B., et al.: J. Power Sources 173, 891–908 (2007)CrossRefGoogle Scholar
  51. 51.
    Atanasoski, R., Dodelet, J.-P.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, pp. 639–649. Elsevier, Amsterdam (2009)Google Scholar
  52. 52.
    Serov, A., Tylus, U., Artyushkova, K., Mukerjee, S., Atanassov, P.: Appl. Catal. B 150–151, 179–186 (2014)CrossRefGoogle Scholar
  53. 53.
    Shen, P.K.: In: Zhang, J. (ed.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications, pp. 355–380. Springer, London (2008)Google Scholar
  54. 54.
    Eikerling, M.H., Malek, K., Wang, Q.: In: Zhang, J. (ed.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications, pp. 355–380. Springer, London (2008)Google Scholar
  55. 55.
    Wagner, F.T., Lakshmanan, B., Mathias, M.F.: J. Phys. Chem. Lett. 1, 2204–2219 (2010)CrossRefGoogle Scholar
  56. 56.
    Debe, M.: J. Electrochem. Soc. 160, F522–F534 (2013)CrossRefGoogle Scholar
  57. 57.
    Kongskanand, A., Owejan, J.E., Moose, S., Dioguardi, M., Biradar, M., Makkaria, R.: J. Electrochem. Soc. 159, F676–F682 (2012)CrossRefGoogle Scholar
  58. 58.
    Kundu, S., Cimenti, M., Lee, S., Bessarabov, D.: Membr. Technol. 10, 7–10 (2009)CrossRefGoogle Scholar
  59. 59.
    Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., Jarvi, T.D.: Electrochem. Solid State Lett. 8, A273–A276 (2005)CrossRefGoogle Scholar
  60. 60.
    Gu, W., Carter, R.N., Yu, P.T., Gasteiger, H.A.: ECS Trans. 11, 963–973 (2005)CrossRefGoogle Scholar
  61. 61.
    Klages, M., Enz, S., Markötter, H., Manke, I., Scholta, J.: J. Power Sources 239, 596–603 (2013)CrossRefGoogle Scholar
  62. 62.
    Manke, I., Hartnig, C., Grünerbel, M., Lehnert, W., Kardjilov, K., Haibel, A., Hilger, A., Banhart, J., Riesemeier, H.: Appl. Phys. Lett. 90, 174105–174105-3 (2007)CrossRefGoogle Scholar
  63. 63.
    Hartnig, C., Manke, I., Kuhn, R., Kardjilov, K., Banhart, J., Lehnert, W.: Appl. Phys. Lett. 92, 134106-1–134106-3 (2008)CrossRefGoogle Scholar
  64. 64.
    Markötter, H., Haussmann, J., Alink, R., Tötzke, C., Arlt, T., Klages, M., Riesemeier, H., Gerteisen, D., Banhart, J., Manke, I.: Electrochem. Commun. 34, 22–24 (2013)CrossRefGoogle Scholar
  65. 65.
    Alink, R., Haussmann, J., Markötter, H., Schwager, M., Manke, I., Gerteisen, D.: J. Power Sources 233, 358–368 (2013)CrossRefGoogle Scholar
  66. 66.
    Krüger, P., Markötter, H., Haussmann, J., Klages, M., Arlt, T., Banhart, J., Hartnig, C., Manke, I., Scholta, J.: J. Power Sources 239, 5250–5255 (2011)CrossRefGoogle Scholar
  67. 67.
    Bloomfield, D., Bloomfield, V.: In: White, R.E., Vayenas, C.G. (eds.) Modern Aspects of Electrochemistry, vol. 40, pp. 1–33. Springer, London (2007)Google Scholar
  68. 68.
    Cheng, T.: In: Wilkinson, D.P., Zhang, J., Hui, R., Fergus, J., Li, X. (eds.) Proton Exchange Membrane Fuel Cells: Materials Properties and Performances, pp. 305–342. CRC Press, Boca Raton, FL (2010)Google Scholar
  69. 69.
    Kumar, A., Reddy, R.G.: In: Chandram D., Bautista, R.G. (eds.) Fundamentals of Advanced Materials and Energy Conversion Proceedings. TMS, Seattle, WA, pp. 41–53 (2002)Google Scholar
  70. 70.
    Yuan, X.Z., Wang, J., Zhang, J.J.: J. New Mater. Electrochem. Syst. 8, 257–267 (2005)Google Scholar
  71. 71.
    Karimi, S., Fraser, N., Roberts, B., Foulkes, F.R.: Adv. Mater. Sci. Eng. (2012). doi: 10.1155/2012/828070 Google Scholar
  72. 72.
    http://www.decode-project.eu, last viewed May 2013
  73. 73.
    Mawdsley, J.R., Carter, J.D., Wang, X., Niyogi, S., Fan, C.Q., Koc, R., Osterhout, G.: J. Power Sources 231, 106–112 (2013)CrossRefGoogle Scholar
  74. 74.
    Frisch, L.: Seal. Technol. 93, 7–9 (2001)CrossRefGoogle Scholar
  75. 75.
    Ye, D.H., Zhan, Z.G.: J. Power Sources 231, 285–292 (2013)CrossRefGoogle Scholar
  76. 76.
    St-Pierre, J.: In: Garche, J. (ed.) Encyclopedia of Electrochemical Power Sources, vol. 2, pp. 879–889. Elsevier, Amsterdam (2009)Google Scholar
  77. 77.
    Tan, J., Chao, Y.J., Wang, H., Gong, J., van Zee, J.W.: Polym. Degrad. Stab. 94, 2072–2078 (2009)CrossRefGoogle Scholar
  78. 78.
    Tan, J., Chao, Y.J., Li, X., van Zee, J.W.: J. Power Sources 172, 782–789 (2007)CrossRefGoogle Scholar
  79. 79.
    Schulze, M., Knöri, T., Schneider, A., Gülzow, E.: J. Power Sources 127, 222–229 (2004)CrossRefGoogle Scholar
  80. 80.
    Wu, J., Yuan, X.Z., Martin, J.J., Wang, H., Zhang, J., Shen, J., Wu, S., Merida, W.: J. Power Sources 184, 104–119 (2008)CrossRefGoogle Scholar
  81. 81.
  82. 82.
    James, B.D., Moton, B.D., Colella, W.G.: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications 2013 Update. http://energy.gov/sites/prod/files/2014/11/f19/fcto_sa_2013_pemfc_transportation_cost_analysis.pdf, last viewed Jan 2015
  83. 83.
    http://autostack.zsw-bw.de, last viewed May 2013
  84. 84.
    Kordesch, K., Cifrain, M.: In: Vielstich, W., Lam, A., Gasteiger, H.A. (eds.) Handbook of Fuel Cells, Fundamentals, Technology and Applications, pp. 789–793. Wiley, Chichester (2003)Google Scholar
  85. 85.
    Norishige Konno, N., Mizuno, S., Nakaji, H., Ishikawa, Y.: Development of compact and high performance fuel cell stack. SAE Int. J. Altern. Powertrains 4 (2015). doi: 10.4271/2015-01-1175 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-WürttembergUlmGermany
  2. 2.FCBATUlmGermany

Personalised recommendations