Advertisement

Costs of Making Hydrogen Available in Supply Systems Based on Renewables

  • Thomas GrubeEmail author
  • Bernd Höhlein

Abstract

A complementary supply system consisting of electric power and hydrogen can solve the challenge of integrating renewable power into various economic sectors. In the transportation sector, direct-hydrogen fuel cell systems allow for highly efficient and clean transport systems, thus significantly reducing the demand for crude oil-based transportation fuels. One of the key factors for market success of hydrogen technologies is the cost of hydrogen at refueling stations, another key factor is the introduction of fuel-cell vehicles into the market. On the basis of a literature study, the following chapter will show that particularly in the transport sector, it is possible to achieve competitive cost levels compared to today’s transportation fuels. Information about individual elements of the various hydrogen value chains under consideration as well as the results from studies that focus on integrating hydrogen into future energy systems were analyzed with respect to greenhouse gas emissions and cost.

Keywords

Wind Power Road Transport Transportation Sector Filling Station Renewable Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grube, T., Höhlein, B., Menzer, R.: Methanol als Energieträger. In: Proceedings: Netzwerk Kraftwerkstechnik der EnergieAgentur. NRW, Workshop der AG 3, Gelsenkirchen (2011)Google Scholar
  2. 2.
    Trudewind, C., Wagner, H.-J.: Vergleich von H2-Erzeugungsverfahren. In: Proceedings: 5. Internationalen Energiewirtschaftstagung & IEWT, TU Wien (2007)Google Scholar
  3. 3.
    Sattler, C.: Wasserstoff-Produktionskosten via solarer Reformierung von Erdgas. In: Proceedings: Netzwerk Brennstoffzelle und Wasserstoff, Sitzung des Arbeitskreises H2NRW, Recklinghausen (2010)Google Scholar
  4. 4.
    Smolenaars, J.: Wasserstoff-Produktionskosten via Onsite-Steam-Reformer an der Tankstelle. In: Proceedings: Netzwerk Brennstoffzelle und Wasserstoff, Sitzung des Arbeitskreises H2NRW, Recklinghausen (2010)Google Scholar
  5. 5.
    Tillmetz, W., Bünger, U.: Development status of hydrogen and fuel cells – Europe. In: Proceedings: 18th World Hydrogen Conference, 2010, Forschungszentrum Jülich GmbH, Schriften des Forschungszentrums Jülich, Energy and Environment. ISBN 978-3-655-22010 (2010)Google Scholar
  6. 6.
    Müller-Langer, F., Tzimas, E., Kaltschmitt, M., Peteves, S.: Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy 32, 3797–3810 (2007)CrossRefGoogle Scholar
  7. 7.
    Michaelis, J., Genoese, F., Wietschel, M.: Systemanalyse zur Verwendung von Überschussstrom. In: Proceedings: Ergebnisvorstellung der Studie “Integration von Windwasserstoff-Systemen in das Energiesystem”, Berlin (2013)Google Scholar
  8. 8.
    Lemus, R.G., Martínez Duart, J.M.: Updated hydrogen production costs and parities for conventional and renewable technologies. Int. J. Hydrogen Energy 35, 3929–3936 (2010)CrossRefGoogle Scholar
  9. 9.
    Kwapis, D., Klug, K.H.: Wasserstoffbasiertes Energiekomplementärsystem für die regenerative Vollversorgung eines H2-Technologiezentrums. In: Proceedings: Netzwerk Brennstoffzelle und Wasserstoff, Sitzung des Arbeitskreises H2NRW, Recklinghausen (2010)Google Scholar
  10. 10.
    Gökçek, M.: Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes. Int. J. Hydrogen Energy 35, 10050–10059 (2010)CrossRefGoogle Scholar
  11. 11.
    Liberatore, R., Lanchi, M., Giaconia, A., Tarquini, P.: Energy and economic assessment of an industrial plant for the hydrogen production by water-splitting through the sulfur-iodine thermochemical cycle powered by concentrated solar energy. Int. J. Hydrogen Energy 37, 9550–9565 (2012)CrossRefGoogle Scholar
  12. 12.
    Höhlein, B., Grube, T., Reijerkerk, J.: Hydrogen logistics – production, conditioning, distribution, storage and refueling. In: Proceedings: 2nd European Hydrogen Energy Conference, 22–25 November 2007, Zaragossa (2007)Google Scholar
  13. 13.
    EU Coalition Study: A Portfolio of Powertrains for Europe: A Fact Based Analysis – The Role of Battery Electric Vehicles, Plug-in-Hybrids and Fuel Cell Electric Vehicles. McKinsey, Dusseldorf (2010)Google Scholar
  14. 14.
    Johnson, N., Ogden, J.: A spatially-explicit optimization model for long-term hydrogen pipeline planning. Int. J. Hydrogen Energy 37, 5421–5433 (2012)CrossRefGoogle Scholar
  15. 15.
    Stolten, D., Grube, T., Mergel, J.: Beitrag elektrochemischer Energietechnik zur Energiewende. In: Proceedings: VDI-Tagung Innovative Fahrzeugantriebe, 6–7 November 2012, Dresden, VDI-Berichte 2183. ISBN 978-3-18-092183-9. VDI-Verlag, Dresden (2012)Google Scholar
  16. 16.
    Stiller, C., Schmidt, P., Michalski, J., Wurster, R., Albrecht, U., Bünger, U., Altmann, M.: Potenziale der Wind-Wasserstoff-Technologie in der Freien und Hansestadt Hamburg und in Schleswig Holstein. Ludwig-Bölkow-Systemtechnik GmbH, Eine Untersuchung im Auftrag der Wasserstoffgesellschaft Hamburg e. V., der Freien und Hansestadt Hamburg, vertreten durch die Behörde für Stadtentwicklung und Umwelt, sowie des Landes Schleswig-Holstein, vertreten durch das Ministerium für Wissenschaft, Wirtschaft und Verkehr (2010)Google Scholar
  17. 17.
    Stolzenburg, K.: Integration von Wind-Wasserstoff-Systemen in das Energiesystem: Zusammenfassung & Schlussfolgerungen. In: Proceedings: Ergebnisvorstellung der Studie “Integration von Windwasserstoff-Systemen in das Energiesystem”, Berlin (2013)Google Scholar
  18. 18.
    Baufumé, S., Grüger, F., Grube, T., Krieg, D., Linssen, J., Weber, M., Hake, J.-F., Stolten, D.: GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure. Int. J. Hydrogen Energy 38, 3813–3829 (2013)CrossRefGoogle Scholar
  19. 19.
    Höhlein, B., Grube, T.: Kosten einer potentiellen Wasserstoffnutzung für E-Mobilität mit Brennstoffzellenantrieben. In: et – Energiewirtschaftliche Tagesfragen, Bd. 61 (2011)Google Scholar
  20. 20.
    Studie zur Frage “Woher kommt der Wasserstoff in Deutschland 2050?” Deutsche Energie- Agentur GmbH (dena), Berlin (2010)Google Scholar
  21. 21.
    Wind, J., Froeschle, P., Höhlein, B., Piffaretti, M., Gabba, G.: WTW analyses and mobility scenarios with Optiresource. In: Proceedings: 18th World Hydrogen Conference, Essen (2010)Google Scholar
  22. 22.
    Optiresource – Tool for the visualization of the energy efficiency of a passenger-car-drivetrain from the energy source to the powered wheel (well-to-wheel), Daimler AG. http://www2.daimler.com/sustainability/optiresource/index.html (2013). Accessed 14 May 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Energy and Climate Research (IEK), IEK-3: Electrochemical Process EngineeringForschungszentrum Jülich GmbHJülichGermany
  2. 2.EnergieAgentur.NRWDüsseldorfGermany

Personalised recommendations