Skip to main content

Electrolytic Processes

  • Chapter
Hydrogen and Fuel Cell

Abstract

Securing a reliable, economically-viable and environmentally-sound energy supply is one of the great challenges of the twenty-first century. In the Energy Concept, the German government has formulated guidelines for an environmentally-sound, reliable—and affordable energy supply and, for the first time, mapped a road to the age of renewable energy. The Concept is about designing and implementing a long-term overall strategy for the period up to the year 2050 [BMWi, BMU (Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. BMWi, BMU, 2010)]. In this scope, hydrogen will play a considerable role as a storage medium and an energy carrier for the transport sector. This chapter concerns the basic physico-chemical principles and the state-of-the-art of the various electrolytic processes for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BMWi, BMU: Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. BMWi, BMU, Berlin (2010)

    Google Scholar 

  2. Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG), Erneuerbare-Energien-Gesetz vom 25. Oktober 2008 (BGBl I S. 2074), das zuletzt durch Artikel 1 des Gesetzes vom 17. August 2012 (BGBl I S. 1754) geändert worden ist. Zuletzt geändert durch Art. 1 G v. 17.8.2012 I 1754. Mittelbare Änderung durch Art. 5 G v. 17.8. 2012 I 1754 berücksichtigt 2012

    Google Scholar 

  3. Bundesregierung, D.: Energiewende auf gutem Weg. http://www.bundesregierung.de/Content/DE/Artikel/2012/10/2012-10-11-eeg-reform.html (2012)

  4. Deutscher Verein des Gas- und Wasserfaches e.V., S. 17. Heft: Mit Gas-Innovationen in die Zukunft, Bonn (2010)

    Google Scholar 

  5. Wöhrle, D.: Wasserstoff als Energieträger – eine Replik. Nachrichten aus Chemie, Technik und Laboratorium 39, 1256–1266 (1991)

    Article  Google Scholar 

  6. Mergel, J., Carmo, M., Fritz, D.L.: Status on technologies for hydrogen production by water electrolysis. In: Stolten, D., Scherer, V. (eds.) Transition to Renewable Energy Systems, pp. 425–450. Wiley-VCH, Weinheim (2013)

    Google Scholar 

  7. Sandstede, G.: Moderne Elektrolyseverfahren für die Wasserstoff-Technologie. Chemie Ingenieur Technik 61, 349–361 (1989)

    Article  Google Scholar 

  8. Stolten, D., Krieg, D.: Alkaline electrolysis – introduction and overview. In: Stolten, D. (ed.) Hydrogen and Fuel Cells, pp. 243–270. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  9. Smolinka, T., Günther, M., Garche, J.: NOW-Studie: Stand und Entwicklungspotenzial der Wasserlektrolyse zur Herstellung von Wasserstoff aus regenarativen Energien. NOW, Freiburg (2011)

    Google Scholar 

  10. NREL: Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. National Renewable Energy Laboratory, Golden (2009)

    Google Scholar 

  11. Winter, C.J.: Wasserstoff als Energieträger: Technik, Systeme, Wirtschaft. 2, überarb. u. erw. Aufl. ed. Springer, Berlin (1989)

    Book  Google Scholar 

  12. Streicher, R., Oppermann, M.: Results of an R&D program for an advanced pressure electrolyzer (1989–1994), pp. 641–646. Florida Solar Energy Center, Miami (1994)

    Google Scholar 

  13. Hug, W., Divisek, J., Mergel, J., Seeger, W., Steeb, H.: High efficient advanced alkaline water electrolyzer for solar operation. Adv. Hydrogen Energy 8, 681–690 (1990)

    Google Scholar 

  14. Szyszka, A.: Schritte zu einer (Solar-) Wasserstoff-Energiewirtschaft. 13 erfolgreiche Jahre Solar-Wasserstoff-Demonstrationsprojekt der SWB in Neunburg vorm Wald, Oberpfalz (1999)

    Google Scholar 

  15. Barthels, H., Brocke, W.A., Bonhoff, K., Groehn, H.G., Heuts, G., Lennartz, M., et al.: Phoebus-Juelich: an autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell. Int. J. Hydrogen Energy 23, 295–301 (1998)

    Article  Google Scholar 

  16. Nuttall, L.J., Russell, J.H.: Solid polymer electrolyte water electrolysis – development status. Int. J. Hydrogen Energy 5, 75–84 (1980)

    Article  Google Scholar 

  17. Oberlin, R., Fischer, M.: Status of the MEMBREL process for water electrolysis. Adv. Hydrogen Energy 5, 333–340 (1986)

    Google Scholar 

  18. Stucki, S., Scherer, G.G., Schlagowski, S., Fischer, E.: PEM water electrolyzers: evidence for membrane failure in 100 kW demonstration plants. J. Appl. Electrochem. 28, 1041–1049 (1998)

    Article  Google Scholar 

  19. Yamaguchi, M., Shinohara, T., Taniguchi, H., Nakanori, T., Okisawa, K.: Development of 2500 cm2 solid polymer electrolyte water electrolyzer in We-Net. In: Bolcich, J.C., Veziroglu, T.N. (eds.) 12th World Hydrogen Energy Conference, pp. 747–755. Asociacion Argentina del Hidrogeno, Buenos Aires (1998)

    Google Scholar 

  20. Marshall, A., Borresen, B., Hagen, G., Tsypkin, M., Tunold, R.: Preparation and characterisation of nanocrystalline IrxSn1-xO2 electrocatalytic powders. Mater. Chem. Phys. 94, 226–232 (2005)

    Article  Google Scholar 

  21. Marshall, A., Tsypkin, M., Borresen, B., Hagen, G., Tunold, R.: Nanocrystalline IrxSn(1-x)O2 electrocatalysts for oxygen evolution in water electrolysis with polymer electrolyte – effect of heat treatment. J. New Mater. Electrochem. Syst. 7, 197–204 (2004)

    Google Scholar 

  22. Trasatti, S.: Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503–1512 (1984)

    Article  Google Scholar 

  23. Andolfatto, F., Durand, R., Michas, A., Millet, P., Stevens, P.: Solid polymer electrolyte water electrolysis – electrocatalysis and long-term stability. Int. J. Hydrogen Energy 19, 421–427 (1994)

    Article  Google Scholar 

  24. Millet, P., Andolfatto, F., Durand, R.: Design and performance of a solid polymer electrolyte water electrolyzer. Int. J. Hydrogen Energy 21, 87–93 (1996)

    Article  Google Scholar 

  25. Yamaguchi, M., Okisawa, K., Nakanori, T.: Development of high performance solid polymer electrolyte water electrolyzer in WE-NET. In: Iecec-97 – Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, vol. 1–4, pp. 1958–1965 (1997)

    Google Scholar 

  26. Ledjeff, K., Mahlendorf, F., Peinecke, V., Heinzel, A.: Development of electrode membrane units for the reversible solid polymer fuel-cell (Rspfc). Electrochim. Acta 40, 315–319 (1995)

    Article  Google Scholar 

  27. Rasten, E., Hagen, G., Tunold, R.: Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 48, 3945–3952 (2003)

    Article  Google Scholar 

  28. Ma, H.C., Liu, C.P., Liao, J.H., Su, Y., Xue, X.Z., Xing, W.: Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution. J. Mol. Catal. A Chem. 247, 7–13 (2006)

    Article  Google Scholar 

  29. Hu, J.M., Zhang, J.Q., Cao, C.N.: Oxygen evolution reaction on IrO2-based DSA (R) type electrodes: kinetics analysis of Tafel lines and EIS. Int. J. Hydrogen Energy 29, 791–797 (2004)

    Article  Google Scholar 

  30. Song, S.D., Zhang, H.M., Ma, X.P., Shao, Z.G., Baker, R.T., Yi, B.L.: Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int. J. Hydrogen Energy 33, 4955–4961 (2008)

    Article  Google Scholar 

  31. Nanni, L., Polizzi, S., Benedetti, A., De Battisti, A.: Morphology, microstructure, and electrocatalytic properties of RuO2-SnO2 thin films. J. Electrochem. Soc. 146, 220–225 (1999)

    Article  Google Scholar 

  32. de Oliveira-Sousa, A., da Silva, M.A.S., Machado, S.A.S., Avaca, L.A., de Lima-Neto, P.: Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes. Electrochim. Acta 45, 4467–4473 (2000)

    Article  Google Scholar 

  33. Siracusano, S., Baglio, V., Di Blasi, A., Briguglio, N., Stassi, A., Ornelas, R., et al.: Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int. J. Hydrogen Energy 35, 5558–5568 (2010)

    Article  Google Scholar 

  34. Sheridan, E., Thomassen, M., Mokkelbost, T., Lind, A.: The development of a supported Iridium catalyst for oxygen evolution in PEM electrolysers. In: 61st Annual Meeting of the International Society of Electrochemistry. International Society of Electrochemistry, Nice (2010)

    Google Scholar 

  35. Smolinka, T., Rau, S., Hebling, C.: Polymer electrolyte membrane (PEM) water electrolysis. In: Hydrogen and Fuel Cells, pp. 271–289. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Google Scholar 

  36. Ayers, K.E., Anderson, E.B., Capuano, C., Carter, B., Dalton, L., Hanlon, G., et al.: Research advances towards low cost. High efficiency PEM electrolysis. ECS Trans. 33, 3–15 (2010)

    Article  Google Scholar 

  37. Ayers, K.E., Dalton, L.T., Anderson, E.B.: Efficient generation of high energy density fuel from water. ECS Trans. 41, 27–38 (2012)

    Article  Google Scholar 

  38. HYDROGENICS: Hydrogenics awarded energy storage system for E.ON in Germany. World’s First Megawatt PEM Electrolyzer for Power-to-Gas Facility, 8 April 2013

    Google Scholar 

  39. Maskalick, N.J.: High temperature electrolysis cell performance characterization. Int. J. Hydrogen Energy 11, 563–570 (1986)

    Article  Google Scholar 

  40. Dönitz, W., Erdle, E.: High-temperature electrolysis of water vapor—status of development and perspectives for application. Int. J. Hydrogen Energy 10, 291–295 (1985)

    Article  Google Scholar 

  41. Dönitz, W., Streicher, R.: Hochtemperatur-Elektrolyse von Wasserdampf – Entwicklungsstand einer neuen Technologie zur Wasserstoff-Erzeugung. Chemie Ingenieur Technik 52, 436–438 (1980)

    Article  Google Scholar 

  42. Isenberg, A.O.: Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. Solid State Ionics 3–4, 431–437 (1981)

    Article  Google Scholar 

  43. Dönitz, W., Dietrich, G., Erdle, E., Streicher, R.: Electrochemical high temperature technology for hydrogen production or direct electricity generation. Int. J. Hydrogen Energy 13, 283–287 (1988)

    Article  Google Scholar 

  44. Erdle, E., Dönitz, W., Schamm, R., Koch, A.: Reversibility and polarization behaviour of high temperature solid oxide electrochemical cells. Int. J. Hydrogen Energy 17, 817–819 (1992)

    Article  Google Scholar 

  45. Laguna-Bercero, M.A.: Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)

    Article  Google Scholar 

  46. Carmo, M., Fritz, D.L., Mergel, J., Stolten, D.: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013)

    Article  Google Scholar 

  47. Jensen, J.O., Bandur, V., Bjerrum, N.J.: Pre-investigation of Water Electrolysis, p. 196. Technical University of Denmark, Lyngby (2008)

    Google Scholar 

  48. ProtonOnsite: Hydrogen Generator M Series. http://www.protononsite.com/company/News_PressRelease/mw_press_release.pdf (2015)

  49. Henel, M.: Power-to-Gas – Eine Technologieübersicht. Freiberger Forschungsforum, Freiberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Pitschak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pitschak, B., Mergel, J. (2016). Electrolytic Processes. In: Töpler, J., Lehmann, J. (eds) Hydrogen and Fuel Cell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44972-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44972-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44971-4

  • Online ISBN: 978-3-662-44972-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics