Skip to main content

Use of Conventional and Green Hydrogen in the Chemical Industry

  • Chapter
Hydrogen and Fuel Cell

Abstract

Currently, hydrogen is predominantly produced from hydrocarbons and used as a feedstock in a variety of industrial chemical processes. It is expected that hydrogen in the future will play a significant role as a clean energy carrier as well as a fuel for mobility. That is mainly because hydrogen burns without emitting greenhouse gases, it can be produced from a variety of primary energy sources, it is easy to store and transport, and last but not least, because hydrogen can efficiently be converted into electricity with fuel cells. Having said that, the production of hydrogen from renewable energy sources plays a major role. It appears plausible that this future role of hydrogen and the associated diversification will have repercussions on the existing industrial gases market, especially the use of “green” hydrogen in industry in order to reduce the “Product Carbon Footprint” of industrial products. This chapter covers the status of hydrogen use in industry. Moreover, the potentials and obstacles in the use of “green” hydrogen are discussed and demand for action for the implementation of this use is deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Midrex process: Process for the direct reduction of iron ore with reduction gases [5, 6].

References

  1. EU Prodcom Database: http://ec.europa.eu/eurostat/web/prodcom/overview, NACE Rev. 1.1 Production database; product 24111150 hydrogen

  2. IHS, Englewood, Colorado, USA. web site Hydrogen, status Aug 2013. https://www.ihs.com/products/hydrogen-chemical-economics-handbook.html. Visited Dec 2014

  3. Freedonia Group: World Hydrogen – Industry Study with Forecasts for 2018 and 2023, Study #3165, June 2014, brochure available online: http://www.freedoniagroup.com/World-Hydrogen.html. Retrieved Dec 2014

  4. Häussinger, P., Lohmüller, R., Watson, A.M.: Hydrogen, Chapter 6: Uses. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, Weinheim (2012). doi: 10.1002/14356007.o13_o07

  5. Stiller, C., Schmidt, P., Michalski, J., Wurster, R., Albrecht, U., Bünger, U., Altmann, M.: Potenziale der Wind-Wasserstoff-Technologie in der Freien und Hansestadt Hamburg und in Schleswig-Holstein. Ludwig-Bölkow-Systemtechnik, Ottobrunn (Langfassung) (2010)

    Google Scholar 

  6. HyWays-The European Hydrogen Energy Roadmap: EC project under the 6th Framework Programme, Contract No SES-502596, 2004–2007. http://www.hyways.de

  7. Barbier, F.: Hydrogen distribution infrastructure for an energy system: present status and perspectives of technologies. In: Stolten, D., Grube, T. (Hrsg.) 18th world hydrogen energy conference 2010 – WHEC 2010; parallel sessions book 1: fuel cell basics/fuel infrastructures, Proceedings of the WHEC, Essen, 16–21 May 2010

    Google Scholar 

  8. Tamhankar, S.: Green Hydrogen by Pyroreforming of Glycerol. WHEC, Toronto, June 6. http://www.whec2012.com/wp-content/uploads/2012/06/Tamhankar-WHEC2012-HPA11-2R.pdf

  9. Higman, C., van der Burgt, M.: Gasification. Elsevier Science, Burlington (2003)

    Google Scholar 

  10. Edwards, R., Larivé, J.-F., Beziat, J.-C.: Well-to-wheels analysis of future automotive fuels and powertrains in the European Context. WTT APPENDIX 1: Description of individual processes and detailed input data (2011). doi:10.2788/79018

  11. Erzeugung von grünem Wasserstoff (GreenHydrogen), TÜV Süd Standard CMS 70 (Version12/2011)

    Google Scholar 

  12. Edwards, R., Larivé, J.-F., Beziat, J.-C.: Well-to-wheels analysis of future automotive fuels and powertrains in the European Context. Tank-to-Wheels Report Version 3c, Jul 2011. doi:10.2788/7901

  13. Bode, A., Agar, W., Büker, K., Göke, V., Schlichting, J., Hensmann, M., Jenhsen, U., Klingler, D., Schunk, S.A.: Forschungskooperation entwickelt innovative Technologie zur umweltschonenden Herstellung von Synthesegas aus Kohlendioxid und Wasserstoff. Chem. Ing. Tech. 86(9), 1633–1634 (2014)

    Article  Google Scholar 

  14. Kruse, A.: Hydrothermal biomass gasification. J. Supercrit. Fluids 47(3), 391–399 (2009)

    Article  MathSciNet  Google Scholar 

  15. European Commission: 7th Framework Programme, research project CERTIFHY, http://www.fch-ju.eu/project/certifhy

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiller, C., Hochrinner, H. (2016). Use of Conventional and Green Hydrogen in the Chemical Industry. In: Töpler, J., Lehmann, J. (eds) Hydrogen and Fuel Cell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44972-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44972-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44971-4

  • Online ISBN: 978-3-662-44972-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics