Skip to main content

6-DoF Haptic Simulation of Deformable Objects

  • Chapter
  • First Online:
Haptic Rendering for Simulation of Fine Manipulation

Abstract

In this chapter, the configuration-based optimization approach for 6-DoF haptic simulation is extended to handle deformable objects and hybrid contacts. In Sect. 4.1, we introduce the problem and related work for haptic rendering of deformable objects. In Sect. 4.2, we provide an overview of the approach. In Sect. 4.3, we introduce the extended sphere-tree model with springs for deformable objects and the corresponding collision detection scheme. In Sect. 4.4, we extend the configuration-based method to deformation simulation. In Sect. 4.5, we propose an efficient method to simulate hybrid contacts, which are characterized by a tool interacting with both rigid and deformable objects, such as those between a dental probe and both a rigid tooth and its surrounding gingiva. In Sect. 4.6, we explain how to update a sphere tree under deformation. In Sect. 4.7, we describe optimization for determining the configuration of the graphic tool in contact and the corresponding contact force/torque. In Sect. 4.8, we present the results of applying the method to simulating dental operations. In Sect. 4.9, we conclude the chapter and discuss future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.moog.com/markets/medical-dental-simulation/haptic-technology-in-simodont/.

  2. 2.

    http://www.ansys.com/Products/Simulation+Technology/Systems+&+Multiphysics.

References

  • Barbič J, James DL (2008) Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans Haptics 1(1):39–52

    Article  Google Scholar 

  • Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86:490–503

    Article  Google Scholar 

  • Conti F, Khatib O, Baur C (2003) Interactive rendering of deformable objects based on a filling sphere modeling approach. In: Proceedings of the 2003 IEEE international conference on robotics and automation, Taipei, Taiwan, pp 3716–3721, 14–19 Sept 2003

    Google Scholar 

  • Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103:159–168

    Article  Google Scholar 

  • Delingette H, Subsol G, Cotin S, Pignon J (1994) A craniofacial surgery simulation testbed. Visual Biomed Comput 2359(1):607–618

    Google Scholar 

  • Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Visualization Comput Graph 12(1):36–47

    Google Scholar 

  • Fierz B, Spillmann J, Harders M (2011) Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of ACM/Eurographics symposium on computer animation 2011

    Google Scholar 

  • Forsslund J, Sallnas E-L, Palmerius K-J (2009) A user-centered designed FOSS implementation of bone surgery simulations. In: World haptics conference. World haptics 2009, pp 391–392

    Google Scholar 

  • Garre C, Otaduy MA (2010) Haptic rendering of objects with rigid and deformable parts. Comput Graph 34(6):689–697

    Google Scholar 

  • Garre C, Hernández F, Gracia A, Otaduy MA (2011) Interactive simulation of a deformable hand for haptic rendering. In: The proceedings of the IEEE world haptics conference, Istanbul, Turkey, June 2011

    Google Scholar 

  • Lin MC, Otaduy M (2008) Haptic rendering: foundations, algorithms, and applications. A K Peters, Ltd., Natick

    Google Scholar 

  • Luciano C, Banerjee P, DeFanti T (2009) Haptics-based virtual reality periodontal training simulator. Virtual Reality 13(2):69–85

    Google Scholar 

  • Luo Q, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Rob 23(3):416–430

    Article  Google Scholar 

  • Mendoza C, O’Sullivan C (2005) An interruptible algorithm for collision detection between deformable objects. In: Workshop on virtual reality interaction and physical simulation (2005), The Eurographics Association

    Google Scholar 

  • Meier U, Lopez O, Monserrat C, Juan M, Alcaiz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197

    Article  Google Scholar 

  • Müller M, Heidelberger B, Teschner M, Gross M (2005) Meshless deformations based on shape matching. ACM Trans Graph 24(3):471–478

    Article  Google Scholar 

  • Nealen A, Muller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable models in computer graphics. Comput Graph Forum 25(4):809–836

    Article  Google Scholar 

  • Payan Y, Bettega G, Raphael B (1998) A biomechanical model of the human tongue and its clinical implications. In: Medical image computing and computer-assisted intervention, MICCAI’98. Lecture notes in computer science, vol 1496/1998, pp 688–695

    Google Scholar 

  • Peterlik I, Nouicer M, Duriez C, Cotin S, Kheddar A (2011) Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans Haptics 4:175–187 (special issue on haptics in medicine and clinical skill acquisition)

    Article  Google Scholar 

  • Saupin G, Duriez C, Cotin S (2008) Contact model for haptic medical simulations, ISBMS 2008, pp 157–165

    Google Scholar 

  • Shi W, Payandeh S (2010) Towards point-based haptic interactions with deformable objects. In: ASME 2010 world conference on innovative virtual reality (WINVR2010), Ames, Iowa, USA, pp 259–265, 12–14 May 2010

    Google Scholar 

  • Tse B, Harwin W, Barrow A, Quinn B, San Diego J, Cox M (2010) Design and development of a haptic dental training system—hapTEL. In: EuroHaptics 2010 conference. Lecture notes in computer science, vol 6192/2010. VU University, Amsterdam, pp 101–108

    Google Scholar 

  • Wang D, Zhang Y, Wang Y, Lü P, Zhou R, Zhou W (2009) Haptic rendering for dental training system. Sci China Ser F Inf Sci 52(3):529–546

    Google Scholar 

  • Wang D, Zhang X, Zhang Y, Xiao J (2013) Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Trans Haptics 6(2):167–180

    Article  Google Scholar 

  • Wang D, Shi Y, Liu S, Zhang Y, Xiao J (2014) Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Trans Haptics 7(1):48–60

    Article  Google Scholar 

  • Wu X, Downes M, Goktekin T, Tendick F (2001) Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. Comput Graph Forum 20(3):349–358

    Article  Google Scholar 

  • Zhong Y, Shirinzadeh B, Alici G, Smith J (2005) A new methodology for deformable object simulation. In: Proceedings of 2005 IEEE international conference on robotics and automation, pp 1902–1907

    Google Scholar 

  • Zhuang Y, Canny J (2000) Haptic interaction with global deformations. In: The international conference on robotics and automations, IEEE, San Francisco, California, pp 2428–2433, 24–28 April 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangxiao Wang .

4.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 3,963 kb)

Supplementary material 2 (WMV 3,225 kb)

Supplementary material 3 (WMV 3,981 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, D., Xiao, J., Zhang, Y. (2014). 6-DoF Haptic Simulation of Deformable Objects. In: Haptic Rendering for Simulation of Fine Manipulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44949-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44949-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44948-6

  • Online ISBN: 978-3-662-44949-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics