Skip to main content

Configuration-based Optimization Approach

  • Chapter
  • First Online:
Haptic Rendering for Simulation of Fine Manipulation
  • 638 Accesses

Abstract

To tackle computational challenges in 6-DoF haptic rendering of fine manipulation, in this book we present a novel constraint-based approach: the configuration-based optimization approach. In this chapter, we introduce the basics of the configuration-based optimization approach to 6-DoF haptic rendering of rigid body in contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Kumano T, Ogino K (1995) Intermediate representation for stiff virtual objects. In: Proceedings of virtual reality annual international symposium, pp 203–210

    Google Scholar 

  • Adams RJ, Hannaford B (1998) A two-port framework for the design of unconditionally stable haptic interfaces. In: Proceedings of IEEE/RSJ international conference on intelligent robots systems, pp 1254–1259

    Google Scholar 

  • Berkelman PJ (1999) Tool-based haptic interaction with dynamic physical simulations using Lorentz magnetic levitation. PhD dissertation, Robotics Institution, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  • Bradshaw G, Sullivan CO (2004) Adaptive medial-axis approximation for sphere-tree construction. ACM Trans Graph 23(1):1–26

    Google Scholar 

  • Bradshaw G (2003) Sphere-tree construction toolkit. http://isg.cs.tcd.ie/spheretree/, Feb 2003

  • Brooks Jr FP, Ouh-Young M, Batter JJ, Kilpatrick PJ, Baskett F (eds) (1990) Project GROPE—haptic displays for scientific visualization. In: Proceedings of computer graphics (SIGGRAPH), Aug 1990, vol 24, pp 177–185

    Google Scholar 

  • Chang B, Colgate JE (1997) Real-time impulse-based simulation of rigid body systems for haptic display. In: Proceedings of ASME Dynamic Systems and Control Division, pp 145–152

    Google Scholar 

  • Colgate JE, Brown JM (1994) Factors affecting the Z-width of a haptic display. In: Proceedings of IEEE international conference on robotics and automation, Los Alamitos, CA, pp 3205–3210

    Google Scholar 

  • Colgate JE, Schenkel GG (1994) Passivity of a class of sampled-data systems: application to haptic interfaces. In: Proceedings of American control conference, pp 3236–3240

    Google Scholar 

  • Colgate JE, Stanley MC, Brown JM (1995) Issues in the haptic display of tool use. In: Proceedings of IEEE/RSJ international conference on intelligent robots systems, pp 140–145

    Google Scholar 

  • Craig JJ (1989) Introduction to robotics: mechanics and control, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Vis Comput Graph 12:36–47

    Google Scholar 

  • Gregory A, Mascarenhas A, Ehmann S, Lin MC, Manocha D (2000) 6-DOF haptic display of polygonal models. In: Proceedings of IEEE visualization conference, pp 139–146

    Google Scholar 

  • Hannaford B, Ryu J-H, Kim YS (2002) Stable control of haptics. In: McLaughlin ML, Hespanha JP, Sukhatme GS (eds) Touch in virtual environments, Chap 2. Prentice-Hall, Upper Saddle River, pp 47–70

    Google Scholar 

  • Ho C, Basdogan C, Srinivasan MA (1999) An efficient haptic rendering technique for displaying 3D polyhedral objects and their surface details in virtual environments. Presence Teleoperators Virtual Environ 8(5):477–491

    Article  Google Scholar 

  • Hubbard PM (1996) Approximating polyhedra with spheres for time-critical collision detection. ACM Trans Graph 15(3):179–210

    Article  Google Scholar 

  • Johnson DE, Willemsen P (2004) Accelerated haptic rendering of polygonal models through local descent. In: Proceedings of haptics symposium, pp 18–23

    Google Scholar 

  • Jones LA, Hunter IW, Irwin RJ (1992) Differential thresholds for limb movement measured using adaptive techniques. Percept Psychophys 52:529–535

    Article  Google Scholar 

  • Kim YJ, Otaduy MA, Lin MC, Manocha D (2003) Six-degree-of-freedom haptic rendering using incremental and localized computations. Presence 12(3):277–295

    Article  Google Scholar 

  • Lin MC, Otaduy M (2008) Haptic rendering: foundations, algorithms, and applications. A K Peters, Ltd, USA

    Google Scholar 

  • Mahvash M, Hayward V (2005) High-fidelity passive force-reflecting virtual environments. IEEE Trans Robot 21(1):38–46

    Article  Google Scholar 

  • McNeely W, Puterbaugh K, Troy J (1999) Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of ACM SIGGRAPH

    Google Scholar 

  • Miller BE, Colgate JE, Freeman RA (2000) Guaranteed stability of haptic systems with nonlinear virtual environments. IEEE Trans Robot Autom 16(6):712–719

    Article  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Berlin

    Google Scholar 

  • Ortega M, Redon S, Coquillart S (2007) A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Trans Vis Comput Graph 13(3):458–469

    Google Scholar 

  • Pang X, Tan HZ, Durlach NI (1991) Manual discrimination of force using active finger motion. Percept Psychophys 49(6):531–540

    Article  Google Scholar 

  • Redon S (2004) Fast continuous collision detection and handling for desktop virtual prototyping. Virtual Reality 8(1):63–70

    Google Scholar 

  • Ruffaldi E, Morris D, Edmunds T, Barbagli F, Pai D (2006) Standardized evaluation of haptic rendering systems. In: IEEE haptic interfaces for virtual environment and teleoperator systems, VR

    Google Scholar 

  • Ruspini D, Khatib O (2000) A framework for multi-contact multi-body dynamic simulation and haptic display. In: Proceedings of IEEE/RSJ international conference on intelligent robots systems, pp 1322–1327

    Google Scholar 

  • Ruspini DC, Kolarov K, Khatib O (1997) The haptic display of complex graphical environments. In: Whitted T (ed) Proceedings of SIGGRAPH 97, computer graphics proceedings, annual conference series. Addison Wesley, Reading, pp 345–352

    Google Scholar 

  • Salcudean SE, Vlaar TD (1994) On the emulation of stiff walls and static friction with a magnetically levitated input/output device. In: Proceedings of ASME haptic interfaces for virtual environment and teleoperator systems, pp 303–310

    Google Scholar 

  • Tan HZ, Durlach NI, Beauregard GL, Srinivasan MA (1995) Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Percept Psychophys 57:495–510

    Article  Google Scholar 

  • Tang M, Kim YJ, Manocha D (2009) C2A: controlled conservative advancement for continuous collision detection of polygonal models. ICRA, pp 849–854

    Google Scholar 

  • Wan M, McNeely WA (2003) Quasi-static approximation for 6 degrees-of-freedom haptic rendering. In Proceedings of IEEE visualization conference, pp 257–262

    Google Scholar 

  • Wang D, Zhang X, Zhang Y, Xiao J (2011) Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 906–912

    Google Scholar 

  • Wang D, Zhang Y, Hou J, Wang Y, Lü P, Chen Y, Zhao H (2012a) iDental: a haptic-based dental simulator and its preliminary evaluation. IEEE Trans Haptics 5(4):332–343

    Google Scholar 

  • Wang D, Liu S, Zhang X, Zhang Y, Xiao J (2012b) Six-degree-of-freedom haptic simulation of organ deformation in dental operations. In: IEEE international conference on robotics and automation, ICRA 2012, St. Paul, 14–18 May 2012, pp 1050–1056

    Google Scholar 

  • Wang D, Liu S, Xiao J, Hou J, Zhang Y (2012c) Six degree-of-freedom haptic simulation of pathological changes in periodontal operations. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS2012), Vilamoura, Algarve, 7–12 Oct 2012

    Google Scholar 

  • Wang D, Zhang X, Zhang Y, Xiao J (2013) Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Trans Haptics 6(2):167–180

    Article  Google Scholar 

  • Weller R, Zachmann G (2009) A unified approach for physically-based simulations and haptic rendering. In: Proceedings of the ACM SIGGRAPH symposium on video games. ACM, New York, NY, USA, pp 151–159

    Google Scholar 

  • Zhang L (2009) Efficient motion planning using generalized penetration depth computation. PhD thesis, Computer Science Department, University of North Carolina at Chapel Hill

    Google Scholar 

  • Zhang X, Lee M, Kim YJ (2006) Interactive continuous collision detection for non-convex polyhedra. Vis Comput 22(9):749–760

    Article  Google Scholar 

  • Zhang X, Wang D, Zhang Y, Xiao J (2011) Configuration-based optimization for six degree-of-freedom haptic rendering using sphere-trees. In: Proceedings of the IEEE International Conference on Intelligent Robot and Systems (IROS), pp 2602–2607

    Google Scholar 

  • Zilles CB, Salisbury JK (1995) A Constraint-based god-object method for haptic display. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Aug 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangxiao Wang .

2.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 6603 kb)

Supplementary material 2 (WMV 1747 kb)

Supplementary material 3 (WMV 1472 kb)

Supplementary material 4 (WMV 6154 kb)

Supplementary material 5 (WMV 5572 kb)

Supplementary material 6 (WMV 5573 kb)

Supplementary material 7 (WMV 3869 kb)

Supplementary material 8 (WMV 2647 kb)

Supplementary material 9 (WMV 3257 kb)

Supplementary material 10 (WMV 2388 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, D., Xiao, J., Zhang, Y. (2014). Configuration-based Optimization Approach. In: Haptic Rendering for Simulation of Fine Manipulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44949-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44949-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44948-6

  • Online ISBN: 978-3-662-44949-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics