Skip to main content

Abstract

In this chapter, we provide an overview of haptic interaction systems and define haptic rendering, highlighting the difference between 3-DoF and 6-DoF haptic rendering. We also introduce the three main approaches of haptic rendering. Finally, we discuss features of fine manipulation and the associated computational challenges to haptic rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Kumano T, Ogino K (1995) Intermediate representation for stiff virtual objects. In Proceedings of virtual reality annual international symposium, pp 203–210

    Google Scholar 

  • Adams RJ, Hannaford B (1998) A two-port framework for the design of unconditionally stable haptic interfaces. In Proceedings IEEE/RSJ international conference intelligence robots system, pp 1254–1259

    Google Scholar 

  • Barbič J, James DL (2007) Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics Association, Aire-la-Ville, Switzerland, pp 171–180

    Google Scholar 

  • Barbič J, James DL (2008) Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans Haptics 1(1):39–52

    Article  Google Scholar 

  • Basdogan C, Ho C, Srinivasan MA (1997) A ray-based haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. Winter Annu Meeting of ASME 61:77–84

    Google Scholar 

  • Brooks Jr FP, Ouh-Young M, Batter JJ, Kilpatrick PJ, Baskett F (ed) (August 1990) Project GROPE—haptic displays for scientific visualization. In Proceedings computer graphics (SIGGRAPH), vol. 24, pp 177–185

    Google Scholar 

  • Chang B, Colgate JE (1997) Real-time impulse-based simulation of rigid body systems for haptic display. In: Proceedings ASME dynamic system control division, pp 145–152

    Google Scholar 

  • Colgate JE, Stanley MC, Brown JM (1995) Issues in the haptic display of tool use. In: Proceedings of IEEE/RSJ international conference of intelligence robots system, pp 140–145

    Google Scholar 

  • Constantinescu D, Salcudean SE, Croft EA (2005) Haptic rendering of rigid contacts using impulsive and penalty forces. IEEE Trans Robot 21(3):309–323

    Article  Google Scholar 

  • Coquillart S, Ortega M, Tarrin N (2008) Chapter 22 Virtual prototyping, In: Lin MC, Otaduy M (eds) Haptic rendering: foundations, algorithms, and applications, AK Peters Ltd, Massachusetts 2008

    Google Scholar 

  • Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. Academic Press, San Diego

    MATH  Google Scholar 

  • Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103:159–168

    Article  Google Scholar 

  • Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Vis Comput Graphics, pp 36–47

    Google Scholar 

  • Florian G, Claude A, Joan S, Javier M (2008) Large workspace haptic devices for human-scale interaction: a survey. EuroHaptics 2008, Madrid, Spain, 10–13 June, 2008

    Google Scholar 

  • Goertz RC (1952) Fundamentals of general-purpose remote manipulators. Nucleonics 10:36–42

    Google Scholar 

  • Gregory A, Lin M, Gottschalk S, Taylor R (1999) H-COLLIDE: a framework for fast and accurate collision detection for haptic interaction. In: Proceedings of virtual reality conference 1999. IEEE Computer Society, Washington, DC, pp 38–45

    Google Scholar 

  • Gregory A, Mascarenhas A, Ehmann S, Lin MC, Manocha D (2000) 6-DOF haptic display of polygonal models. In: Proceedings of IEEE visualization conference 2000, pp 139–146

    Google Scholar 

  • Guinan AL, Hornbaker NC, Montandon AJ, Doxon, Provancher WR (2013) Back-to-back skin stretch feedback for communicating five degree-of-freedom direction cues, In: Proceeding of world haptics conference (WHC)

    Google Scholar 

  • Harders M (2008) Chapter 24, Haptics in medical applications. In: Lin MC, Otaduy M (eds) Haptic rendering: foundations, algorithms, and applications. A K Peters Ltd, Massachusetts

    Google Scholar 

  • Hasser CJ, Cutkosky MR (2002) System identification of the human hand grasping a haptic knob. In: Proceedings of the 10th symposium on haptic interfaces for virtual environment and teleoperator systems. IEEE, Los Alamitos, CA, pp 171–180

    Google Scholar 

  • Hayward V, MacLean KE (2007) Do it yourself haptics—Part I. IEEE Robotics and Autom Soc Mag 14(4):88–104

    Article  Google Scholar 

  • Ho C, Basdogan C, Srinivasan MA (1999) An efficient haptic rendering technique for displaying 3D polyhedral objects and their surface details in virtual environments. Presence Teleoperators Virtual Environ 8(5):477–491

    Article  Google Scholar 

  • Ho C, Basdogan C, Srinivasan MA (2000) Ray-based haptic rendering: interactions between a line probe and 3D objects in virtual environments. Int J Robot Res 19(7):668–683

    Article  Google Scholar 

  • Ho HN, Jones LA (2007) Development and evaluation of a thermal display for material identification and discrimination. ACM Trans Appl Percept 4:1–24

    Article  Google Scholar 

  • Hoshi T, Takahashi M, Iwamoto T, Shinoda H (2010) Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans Haptics, 3:155

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Google Scholar 

  • Johnson DE, Willemsen P (2003) Six degree of freedom haptic rendering of complex polygonal models. In: Proceedings of haptics symposium. IEEE Computer Society, Washington, DC, pp 229–235

    Google Scholar 

  • Jones LA (1998) Perception and control of finger forces. In: Proceedings haptics symposium, ASME dynamic systems and control division DSC-64, pp 133–137

    Google Scholar 

  • Jones Lynette, Tan Hong Z (2013) Application of psychophysical techniques to haptic research. IEEE Trans Haptics 6(3):268–284

    Article  Google Scholar 

  • Kim YJ, Otaduy MA, Lin MC, Manocha D (2003) Six-degree-of-freedom haptic rendering using incremental and localized computations. Presence 12(3):277–295

    Google Scholar 

  • Klatzky RL, Lederman SJ (1999) Tactile roughness perception with a rigid link inter posed between skin and surface. Perception Psychophys 61(4):591–607

    Article  Google Scholar 

  • Klatzky RL, Lederman SJ (2003) Touch. In: Weiner IB (ed) Handbook of psychology: experimental psychology. Wiley, New York, pp 147–176

    Google Scholar 

  • Krebs H, Ferraro M, Buerger S, Newbery M, Makiyama A, Sand-mann M, Lynch D, Volpe B, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-manus. J Neuro Eng Rehabil 1:5

    Article  Google Scholar 

  • Lederman S, Klatzky R (1997) Designing haptic interfaces for teleoperational and virtual environments: should spatially distributed forces be displayed to the fingertip? In: Proceedings of the ASME dynamic systems and control division. ASME, New York

    Google Scholar 

  • Lederman SJ, Klatzky RL (2004) Multisensory texture perception. In: Stein BE, Spence C, Calvert G (eds) The handbook of multisensory processes. MIT Press, Cambridge, pp 107–122

    Google Scholar 

  • Lin M, Baxter W (2008) Chapter 26, Modeling and creative processes. In: Lin MC, Otaduy M (eds) Haptic rendering: foundations, algorithms, and applications, A K Peters Ltd, Massachusetts

    Google Scholar 

  • Lin MC, Otaduy M (2008) Haptic rendering: foundations, algorithms, and applications. A K Peters Ltd, Massachusetts

    Google Scholar 

  • Luo Q, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Rob 23(3):416–430

    Article  Google Scholar 

  • MacLean KE (2008) Haptic interaction design for everyday interfaces. Rev Hum Factors Ergon 4:149–194

    Article  Google Scholar 

  • Mai N, Avarello M, Bolsinger P (1985) Maintenance of low isometric forces during prehensile grasping. Neuropsychologia 23:805–812

    Google Scholar 

  • Marieb E, Hoehn K (2007) Human anatomy and physiology, 7th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Mark WR, Randolph SC, Finch M, Verth JMV, Taylor II RM (1996) Adding force feedback to graphics systems: issues and solutions. In: Holly R (ed) Proceedings of SIGGRAPH, computer graphics proceedings, annual conference series, Addison Wesley, Reading, MA, pp 447–452

    Google Scholar 

  • McLaughlin ML, Rizzo AA, Jung Y, Peng W, Yeh S, Zhu W (2005) Haptics-enhanced virtual environments for stroke rehabilitation. In Proceedings of IPSI, 2005

    Google Scholar 

  • McNeely W, Puterbaugh K, Troy J (1999) Six degree-of-freedom haptic rendering using voxel sampling. In: Alyn R (ed) Proceedings of SIGGRAPH’99, computer graphics proceedings, annual conference series, Addison Wesley Longman, Reading, MA, pp 401–408

    Google Scholar 

  • McNeely W, Puterbaugh K, Troy J (2006) Voxel-based 6-DoF haptic rendering improvements. Haptics-e 3(7)

    Google Scholar 

  • Mirtich B (1996) Impulse-based dynamic simulation of rigid body systems. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Ortega M, Redon S, Coquillart S (2007) A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties. IEEE Trans Vis Comput Graphics, 13(3):458–469

    Google Scholar 

  • Otaduy MA, Garre C, Lin MC (2013) Representations and algorithms for force-feedback display. Proc IEEE 101(9):2068–2080

    Article  Google Scholar 

  • Otaduy MA, Lin MC (2006) A modular haptic rendering algorithm for stable and transparent 6-DoF manipulation. IEEE Trans Robot 22(4):751–762

    Google Scholar 

  • Paneels S, Roberts JC, (2010) Review of designs for haptic data visualization. IEEE Trans Haptics 3(2):119–137

    Google Scholar 

  • Park J, Doxon AJ, Provancher WR, Johnson DE, Tan HZ (2012) Haptic edge sharpness perception with a contact location display. IEEE Trans Haptics 5(4):323–331

    Article  Google Scholar 

  • Patton J, Dawe G, Scharver C, Mussa-Ivaldi F, Kenyon R (2004) Robotics and virtual reality: the development of a life-dized 3-D system for the rehabilitation of motor function. In: Proceedings of IEEE engineering medical biology society, IEEE Computer Society, Washington D.C, pp 4840–4843

    Google Scholar 

  • Ruspini DC, Kolarov K, Khatib O (1997) The haptic display of complex graphical environments. In: Turner W (ed) Proceedings of SIGGRAPH 97, computer graphics proceedings, annual conference series, Addison Wesley, Reading, MA, pp 345–352

    Google Scholar 

  • Salisbury K, Brock D, Massie T, Swarup N, Zilles C (1995) Haptic rendering: programming touch interaction with virtual objects. In: Proceedings of the symposium on interactive 3D graphics, pp 123–130. New York: ACM Press

    Google Scholar 

  • Salisbury JK, Srinivasan MA (1997) Phantom-based haptic interaction with virtual objects. IEEE Comput. Graphics Appl 17(5):6–10

    Google Scholar 

  • Salisbury JK, Tarr C (1997) Haptic rendering of surfaces defined by implicit functions. Proc ASME 61:61–67

    Google Scholar 

  • Salisbury K, Barbagli F, Conti F (2004) Haptic rendering: introductory concepts. IEEE Comput Graphics Applications Mag 24(2):24–32

    Article  Google Scholar 

  • Shimoga KB (1992) Finger force and touch feedback issues in dexterous telemanipulation. In: Proceedings of fourth annual conference on intelligent robotic systems for space exploration. IEEE Computer Society, Los Alamitos, CA, pp 159–178

    Google Scholar 

  • Sodhi R, Poupyrev I, Glisson M, Israr A (2013) AIREAL: interactive tactile experiences in free air. In: Proceedings of ACM SIGGRAPH 2013

    Google Scholar 

  • Srinivasan MA, Chen JS (1993) Human performance in controlling normal forces of contact with rigid objects. In: Advances in Robotics, Mechatronics, and Haptic Interfaces, vol 49. ASME

    Google Scholar 

  • Stone JH, Gullingsrud H, Schulten K (2001) A system for interac-tive molecular dynamics simulation. In: Symposium on interactive 3D graphics, ACM Press, New York, pp 191–194

    Google Scholar 

  • Sutherland IE (1965) The ultimate display. Proceedings of IFIP congress, pp 506–508

    Google Scholar 

  • Tan HZ, Adelstein BD, Traylor R, Kocsis M, Hirleman ED (2006) Discrimination of real and virtual high-definition textured surfaces. In: Proceedings of symposium on haptic inter faces for virtual environment and teleoperator systems (HAPTICS’06), IEEE Computer Society, Los Alamitos, CA, p 1

    Google Scholar 

  • Taylor RM, Robinett W, Chi VL, Brooks Jr FP, Wright WV, Williams RS, Snyder EJ (1993) The nanomanipulator: a virtual-reality in-terface for a scanning tunneling microscope. In: James TK (ed) Proceedings of SIGGRAPH 93, computer graphics proceedings, annual conference series, ACM Press, New York, pp 127–134

    Google Scholar 

  • Taylor R (2008) Chap. 23, Haptics for scientific visualization, In: Lin MC, Otaduy M, Haptic rendering: foundations, algorithms, and applications, A K Peters Ltd, Massachusetts

    Google Scholar 

  • Vertut J, Marchal P, Debrie G et al (1976) MA-23 bilateral servomanipulator system, Trans Am Nucl Soc, vol. 24

    Google Scholar 

  • Wang D, Zhang X, Zhang Y, Xiao J (2013) Configuration-based optimization for six degree-of-freedom haptic rendering for fine manipulation. IEEE Trans Haptics 6(2):167–180

    Article  Google Scholar 

  • Wang D, Shi Y, Liu S, Zhang Y, Xiao J (2014) Haptic simulation of organ deformation and hybrid contacts in dental operations. IEEE Trans Haptics 7(1):48–60

    Article  Google Scholar 

  • Yokokohji Y, Muramori N, Sato Y, Yoshikawa T (2004) Designing an encountered-type haptic display for multiple fingertip contacts based on the observation of human grasping behavior, In: Proceedings of haptic interfaces for virtual environment and teleoperator systems, HAPTICS‘04. 27–28 March

    Google Scholar 

  • Zilles CB, Salisbury JK (1995) A constraint-based god-object method for haptic display. In: Proceedings IEEE/RSJ intelligence conference intelligent robots and systems, August 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangxiao Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, D., Xiao, J., Zhang, Y. (2014). Introduction. In: Haptic Rendering for Simulation of Fine Manipulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44949-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44949-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44948-6

  • Online ISBN: 978-3-662-44949-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics