Skip to main content

Cancer Stem Cells: Biology and Potential Therapeutic Applications

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Cancer stem cells (CSCs) have been postulated since the emergence of experimental evidences supporting the existence of a subset of cancer cells capable of self-renewal, multiple-lineage differentiation, and chemoresistance–radioresistance. Nonetheless, their precise identification, effective role as a driving force in tumor progression and metastatic spread, and even their existence are widely debated. Comprehension of pathophysiological features, biology, and microenvironmental interactions of CSCs would provide innovative tools to refine diagnostic workup and to overcome resistance to conventional cancer treatments. In the following chapter, the development of the CSCs’ hierarchical model and identification of the hallmark of the presence of stem cells in cancer are described; an overview of the major clinical applications and future challenges in research is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke MF, Eaves CJ, Jamieson CH, Jones DL. Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    CAS  PubMed  Google Scholar 

  2. Kanda Y. Cancer stem cells-Fact or fiction? In: Dittmar T, Zänker KS, editors. Role of cancer stem cells in cancer biology and therapy. Boca Raton: CRC Press; 2013. p. 1–22.

    Google Scholar 

  3. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    CAS  PubMed  Google Scholar 

  4. O’Brien C, Williams B, Webb RJ, Denhardt DT, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    PubMed  Google Scholar 

  5. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    CAS  PubMed  Google Scholar 

  6. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.

    CAS  PubMed  Google Scholar 

  9. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13:153–66.

    CAS  PubMed  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    CAS  PubMed  Google Scholar 

  12. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    CAS  PubMed  Google Scholar 

  13. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    CAS  PubMed  Google Scholar 

  14. Adikrisna R, Tanaka S, Muramatsu S, Aihara A, Ban D, Ochiai T, et al. Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents. Gastroenterology. 2012;143:234–45.

    CAS  PubMed  Google Scholar 

  15. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27:2875–83.

    CAS  PubMed  Google Scholar 

  16. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res. 2007;67:8216–22.

    CAS  PubMed  Google Scholar 

  17. Bruce WR, Gaag H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 1963;199:79–80.

    CAS  PubMed  Google Scholar 

  18. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197:461–3.

    CAS  PubMed  Google Scholar 

  19. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    CAS  PubMed  Google Scholar 

  20. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    CAS  PubMed  Google Scholar 

  21. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006;66:1891–5.

    CAS  PubMed  Google Scholar 

  22. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317:337.

    CAS  PubMed  Google Scholar 

  23. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488:527–30.

    CAS  PubMed  Google Scholar 

  25. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.

    CAS  PubMed  Google Scholar 

  26. Nguyen NP, Almeida FS, Chi A, Nguyen LM, Cohen D, Karlsson U, et al. Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev. 2010;36:485–91.

    CAS  PubMed  Google Scholar 

  27. Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol. 2012;198:281–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Tirino V. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg. 2009;36:446–53.

    PubMed  Google Scholar 

  29. Shi C, Tian R, Wang M, Wang X, Jiang J, Zhang Z, et al. CD44+ CD133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma. Cancer Biol Ther. 2010;10:1182–90.

    CAS  PubMed  Google Scholar 

  30. Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126:2067–78.

    CAS  PubMed  Google Scholar 

  31. Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 2008;68:9703–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;21:6751–60.

    Google Scholar 

  33. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25:1696–708.

    CAS  PubMed  Google Scholar 

  34. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, García-Echeverría C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106:268–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Janisiewicz AM, Shin JH, Murillo-Sauca O, Kwok S, Le QT, Kong C, et al. CD44(+) cells have cancer stem cell-like properties in nasopharyngeal carcinoma. Int Forum Allergy Rhinol. 2012;2:465–70.

    PubMed  Google Scholar 

  36. Yang Y, Chang JW. Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest. 2008;26:725–33.

    CAS  PubMed  Google Scholar 

  37. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Feng D, Peng C, Li C, Zhou Y, Li M, Ling B, et al. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol Rep. 2009;22:1129–34.

    CAS  PubMed  Google Scholar 

  39. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011;64:937–46.

    PubMed  Google Scholar 

  41. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 2010;29:2672–80.

    CAS  PubMed  Google Scholar 

  42. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107:3722–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) livertumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9:50–63.

    CAS  PubMed  Google Scholar 

  44. He J, Liu Y, Zhu T, Zhu J, Dimeco F, Vescovi AL, et al. CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics. 2012;11:M111.010744.

    PubMed Central  PubMed  Google Scholar 

  45. Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, et al. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 2013;8:e57020.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res. 2009;69:5627–9.

    CAS  PubMed  Google Scholar 

  47. Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, et al. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One. 2012;7:e42564.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 2011;91:596–602.

    CAS  PubMed  Google Scholar 

  49. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469:356–61.

    CAS  PubMed  Google Scholar 

  50. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 2011;71:3098–109.

    CAS  PubMed  Google Scholar 

  52. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70:719–29.

    CAS  PubMed  Google Scholar 

  53. Yi JM, Tsai HC, Glöckner SC, Lin S, Ohm JE, Easwaran H, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 2008;68:8094–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, et al. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One. 2011;6:e24217.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010;466:133–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hadnagy A. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006;312:3701–10.

    CAS  PubMed  Google Scholar 

  58. Goodell MA, McKinney-Freeman S, Camargo FD. Isolation and characterization of side population cells. Methods Mol Biol. 2005;290:343–52.

    PubMed  Google Scholar 

  59. An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009;5:1529–42.

    CAS  PubMed  Google Scholar 

  60. Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86:631–7.

    CAS  PubMed  Google Scholar 

  61. Wilson BJ, Schatton T, Zhan Q, Gasser M, Ma J, Saab KR, et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res. 2011;71:5307–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Douville J, Beaulieu R, Balicki D. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 2009;18:17–25.

    CAS  PubMed  Google Scholar 

  63. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Yu C, Yao Z, Dai J, Zhang H, Escara-Wilke J, Zhang X, et al. ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo. 2011;25:69–76.

    PubMed  Google Scholar 

  65. Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8:3297–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Marsden CG, Wright MJ, Pochampally R, Rowan BG. Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol Biol. 2009;590:363–75.

    PubMed  Google Scholar 

  67. Suvà ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, et al. Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res. 2009;69:1776–81.

    PubMed  Google Scholar 

  68. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    CAS  PubMed  Google Scholar 

  69. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.

    CAS  PubMed  Google Scholar 

  70. Kreso A, O’Brien CA. Colon cancer stem cells. Curr Protoc Stem Cell. 2008;7:3.1.1–3.1.12.

    Google Scholar 

  71. Luk SU, Lee TK, Liu J, Lee DT, Chiu YT, Ma S, et al. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population. PLoS One. 2011;6:e19804.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tesei A, Zoli W, Arienti C, Storci G, Granato AM, Pasquinelli G, et al. Isolation of stem/progenitor cells from normal lung tissue of adult humans. Cell Prolif. 2009;42:298–308.

    CAS  PubMed  Google Scholar 

  73. Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47:83–91.

    PubMed  Google Scholar 

  74. Schatton T, Frank MH. The in vitro spheroid melanoma cell culture assay: Cues on tumor initiation? J Invest Dermatol. 2011;130:1769–71.

    Google Scholar 

  75. Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell. 2011;8:486–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Alison MR, Lin WR, Lim SML, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev. 2012;38:589–98.

    CAS  PubMed  Google Scholar 

  77. Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA, et al. Wnt/beta-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J Cell Sci. 2007;120:468–77.

    CAS  PubMed  Google Scholar 

  78. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    CAS  PubMed  Google Scholar 

  79. Theodosiou NA, Tabin CJ. Wnt signaling during development of the gastrointestinal tract. Dev Biol. 2003;15:258–71.

    Google Scholar 

  80. Taipale J, Beachy PA. The hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–54.

    CAS  PubMed  Google Scholar 

  81. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Google Scholar 

  82. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4:a0080052.

    Google Scholar 

  83. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    CAS  PubMed  Google Scholar 

  84. Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a notch-dependent mechanism. Proc Natl Acad Sci U S A. 2006;103:3799–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells. 2007;25:1478–89.

    CAS  PubMed  Google Scholar 

  86. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    CAS  PubMed  Google Scholar 

  87. Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci USA. 2011;108:11482–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One. 2012;7:e33976.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Vermeulen L, De Sousa E, Melo F, Van Der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    CAS  PubMed  Google Scholar 

  90. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, et al. Cutaneous cancer stem cell maintenance is dependent onb-catenin signalling. Nature. 2008;452:650–3.

    CAS  PubMed  Google Scholar 

  91. Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013;15:338–44.

    CAS  PubMed  Google Scholar 

  92. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.

    CAS  PubMed  Google Scholar 

  93. Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther. 2013;139(2):95–110.

    Google Scholar 

  94. Koch U, Radtke F. Notch signaling in solid tumors. Curr Top Dev Biol. 2010;92:411–55.

    CAS  PubMed  Google Scholar 

  95. Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3:565–76.

    CAS  PubMed  Google Scholar 

  96. Yao J, Qian C. Inhibition of Notch3 enhances sensitivity to gemcitabine in pancreatic cancer through an inactivation of PI3K/Akt-dependent pathway. Med Oncol. 2010;27:1017–22.

    CAS  PubMed  Google Scholar 

  97. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol. 2003;23:14–25.

    PubMed Central  PubMed  Google Scholar 

  98. Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N, et al. Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development. 2005;132:1819–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C. NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications. Breast Cancer Res. 2011;13:R63.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res. 2010;16:3141–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Farnie G, Clarke RB. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev. 2007;3:169–75.

    CAS  PubMed  Google Scholar 

  102. Sansone P, Storci G, Giovannini C, Pandolfi S, Pianetti S, Taffurelli M, et al. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells. 2007;25:807–15.

    CAS  PubMed  Google Scholar 

  103. Harrison H, Farnie G, Howell S, Rock RE, Stylianou S, Brennan KR, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70:709–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006;66:7445–52.

    CAS  PubMed  Google Scholar 

  105. Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther. 2009;8:1691–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 2012;22:373–88.

    CAS  PubMed  Google Scholar 

  107. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia. 2006;8:1072–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Fan L, Liu Y, Ying H, Xue Y, Zhang Z, Wang P, et al. Increasing of blood tumor barrier permeability through paracellular pathway by low-frequency ultra sound irradiation in vitro. J Mol Neurosci. 2011;43:541–8.

    CAS  PubMed  Google Scholar 

  109. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H. Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010;28:1019–29.

    CAS  PubMed  Google Scholar 

  110. Androutsellis-Theotokis A, Leker RR, Soldner F. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.

    CAS  PubMed  Google Scholar 

  111. Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, et al. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res. 2010;30:3853–67.

    CAS  PubMed  Google Scholar 

  112. Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer. 2011;105:796–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Hu YY, Zheng MH, Zhang R, Liang YM, Han H. Notch signaling pathway and cancer metastasis. Adv Exp Med Biol. 2012;727:186–98.

    CAS  PubMed  Google Scholar 

  114. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.

    CAS  PubMed  Google Scholar 

  115. Stecca B, Ruiz I, Altaba A. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and Non-HEDGEHOG signals. J Mol Cell Biol. 2010;2:84–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, et al. Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett. 2012;322:139–47.

    CAS  PubMed  Google Scholar 

  117. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272:1668–71.

    CAS  PubMed  Google Scholar 

  118. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH, et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 1997;57:2369–72.

    CAS  PubMed  Google Scholar 

  119. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.

    CAS  PubMed  Google Scholar 

  120. Bienz M, Clevers H. Linking colorectal cancer to wnt signaling. Cell. 2000;103:311–20.

    CAS  PubMed  Google Scholar 

  121. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. Hedgehog-gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17:165–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1:338–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18:2715–26.

    CAS  PubMed  Google Scholar 

  124. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004;9:667–76.

    CAS  PubMed  Google Scholar 

  125. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    PubMed  Google Scholar 

  126. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the pten/mtor/stat3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104:16158–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7:e1000121.

    PubMed Central  PubMed  Google Scholar 

  129. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Chen R, Alvero AB, Silasi DA, Mor G. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol. 2007;57:93–107.

    CAS  PubMed  Google Scholar 

  131. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G. Cancers take their Toll–the function and regulation of Toll-like receptors in cancer cells. Oncogene. 2008;27:225–33.

    CAS  PubMed  Google Scholar 

  132. Jiang W, Peng J, Zhang Y, Cho WC, Jin K. The implications of cancer stem cells for cancer therapy. Int J Mol Sci. 2012;13:16636–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Chefetz I, Holmberg JC, Alvero AB, Visintin I, Mor G. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway. Cell Cycle. 2011;10:2206–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.

    CAS  PubMed  Google Scholar 

  135. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44CD24 stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121:2723–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8:158–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin Cancer Res. 2011;17:6125–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Nelson EA, Sharma SV, Settleman J, Frank DA. A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget. 2011;2:518–24.

    PubMed Central  PubMed  Google Scholar 

  139. Leizer A, Alvero AB, Fu HH, Holmberg JC, Cheng YC, Silasi DA, et al. Regulation of inflammation by the NF-κB pathway in ovarian cancer stem cells. Am J Reprod Immunol. 2011;65:438–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Cao Y, Lathia JD, Eyler CE, Wu Q, Li Z, Wang H, et al. Erythropoietin receptor signaling through stat3 is required for glioma stem cell maintenance. Genes Cancer. 2010;1:50–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Sherry MM, Reeves A, Wu JK, Cochran BH. Stat3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27:2383–92.

    CAS  PubMed  Google Scholar 

  142. Lin L, Liu Y, Li H, Li PK, Fuchs J, Shibata H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer. 2011;105:212–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Hellsten R, Johansson M, Dahlman A, Sterner O, Bjartell A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS One. 2011;6:e22118.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12:767–75.

    CAS  PubMed  Google Scholar 

  145. Alison MR, Lim SML, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 2011;223:147–61.

    CAS  PubMed  Google Scholar 

  146. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e2888.

    PubMed Central  PubMed  Google Scholar 

  148. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108:7950–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108:1397–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146:633–44.

    CAS  PubMed  Google Scholar 

  152. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Munoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol. 2012;6:620–36.

    CAS  PubMed  Google Scholar 

  154. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474:318–26.

    CAS  PubMed  Google Scholar 

  155. Shestopalov IA, Zon LI. Stem cells: the right neighbour. Nature. 2012;481:453–5.

    CAS  PubMed  Google Scholar 

  156. Borovski T, De Sousa E, Melo F, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res. 2011;71:634–9.

    CAS  PubMed  Google Scholar 

  157. Ba G, Wijnhoven BPL, Van Lanschot JJB. Cancer stem cells and their potential implications for the treatment of solid tumors. J Surg Oncol. 2012;106:209–15.

    Google Scholar 

  158. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

    CAS  PubMed  Google Scholar 

  159. Christensen K, Schroder HD, Kristensen BW. CD133+ niches and single cells in glioblastoma have different phenotypes. J Neurooncol. 2011;104:129–43.

    CAS  PubMed  Google Scholar 

  160. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17:320–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Shiao SL, Ganesan AP, Rugo HS, Coussens LM. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev. 2011;25:2559–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    CAS  PubMed  Google Scholar 

  163. Charles NA, Holland EC. TRRAP and the maintenance of stemness in gliomas. Cell Stem Cell. 2010;6:6–7.

    CAS  PubMed  Google Scholar 

  164. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2011;59:1169–80.

    PubMed  Google Scholar 

  165. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    CAS  PubMed  Google Scholar 

  166. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 2008;22:436–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Seidel S, Garvalov BK, Wirta V, von Stechow L, Schänzer A, Meletis K, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain. 2010;133:983–95.

    PubMed  Google Scholar 

  168. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129:2310–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel). 2011;3:716–29.

    Google Scholar 

  171. Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment. Ochsner J. 2013;13:109–18.

    PubMed Central  PubMed  Google Scholar 

  172. Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol. 2012;22:151–74.

    PubMed  Google Scholar 

  173. Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood? Int J Cancer. 2011;129:2315–27.

    CAS  PubMed  Google Scholar 

  174. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemia stem cells. Nat Med. 2006;12:1167–74.

    PubMed  Google Scholar 

  175. Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL expressing leukemic stem cells. Nat Med. 2006;12:1175–80.

    CAS  PubMed  Google Scholar 

  176. Borovski T, Verhoeff JJ, ten Cate R, Cameron K, de Vries NA, van Tellingen O, et al. Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. Int J Cancer. 2009;125:1222–30.

    CAS  PubMed  Google Scholar 

  177. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.

    CAS  PubMed  Google Scholar 

  178. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71:614–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15:501–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011;18:829–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C. Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle. 2012;11:1282–90.

    CAS  PubMed  Google Scholar 

  183. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 2006;66:4553–7.

    CAS  PubMed  Google Scholar 

  184. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67:3560–4.

    CAS  PubMed  Google Scholar 

  185. La Barge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010;16:3121–9.

    Google Scholar 

  186. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    CAS  PubMed  Google Scholar 

  187. Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20:370–83.

    CAS  PubMed  Google Scholar 

  188. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Burness ML, Sipkins DA. The stem cell niche in health and malignancy. Semin Cancer Biol. 2010;20:107–15.

    PubMed  Google Scholar 

  190. Ponomarev V. Nuclear imaging of cancer cell therapies. J Nucl Med. 2009;50:1013–6.

    CAS  PubMed  Google Scholar 

  191. Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30:973–81.

    CAS  PubMed  Google Scholar 

  192. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    CAS  PubMed  Google Scholar 

  193. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    CAS  PubMed  Google Scholar 

  194. Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J Endocrinol Invest. 2008;31:809–19.

    CAS  PubMed  Google Scholar 

  195. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.

    CAS  Google Scholar 

  196. Alix-Panabieres C, Vendrell JP, Pellé O, Rebillard X, Riethdorf S, Müller V, et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem. 2007;53:537–9.

    CAS  PubMed  Google Scholar 

  197. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12:5615–21.

    CAS  PubMed  Google Scholar 

  198. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    CAS  PubMed  Google Scholar 

  199. Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14:29–43.

    PubMed  Google Scholar 

  200. Biddle A, Mackenzie IC. Cancer stem cells and EMT in carcinoma. Cancer Metastasis Rev. 2012;31:285–93.

    Google Scholar 

  201. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    CAS  PubMed  Google Scholar 

  202. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    CAS  PubMed  Google Scholar 

  203. Blazek ER, Foutch JL, Maki G. Daoymedulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133þ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007;67:1–5.

    CAS  PubMed  Google Scholar 

  204. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells. 2008;26:1818–30.

    PubMed  Google Scholar 

  205. Gal A, Sjöblom T, Fedorova L, Imreh S, Beug H, Moustakas A. Sustained TGF beta exposure suppresses smad and non-smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene. 2008;27:1218–30.

    CAS  PubMed  Google Scholar 

  206. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    CAS  PubMed  Google Scholar 

  207. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci. 1985;77:209–23.

    CAS  PubMed  Google Scholar 

  210. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Yi SY, Hao YB, Nan KJ, Fan TL. Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev. 2013;39:290–6.

    CAS  PubMed  Google Scholar 

  212. Ben-Baruch A. Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis. 2008;25:345–56.

    CAS  PubMed  Google Scholar 

  213. Belperio JA, Phillips RJ, Burdick MD, Lutz M, Keane M, Strieter R. The SDF-1/CXCL 12/CXCR4 biological axis in non-small cell lung cancer metastases. Chest. 2004;125:156S.

    PubMed  Google Scholar 

  214. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    PubMed  Google Scholar 

  215. Kim J, Takeuchi H, Lam ST, Turner RR, Wang HJ, Kuo C, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol. 2005;23:2744–53.

    CAS  PubMed  Google Scholar 

  216. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 2003;63:3833–9.

    CAS  PubMed  Google Scholar 

  217. Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gönner U, Wilsberg V, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005;11:1743–50.

    CAS  PubMed  Google Scholar 

  218. Hojilla CV, Mohammed FF, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 2003;89:1817–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203:2201–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94.

    CAS  PubMed  Google Scholar 

  221. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69:1302–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17:867–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–22.

    CAS  PubMed  Google Scholar 

  224. de Sousa EM, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, et al. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell. 2011;9:476–85.

    Google Scholar 

  225. de Sousa EM, Vermeulen L, Richel D, Medema JP. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 2011;17:647–53.

    PubMed  Google Scholar 

  226. Vermeulen M, Pesteur FL, Gagnerault MC, Mary JY, Sainteny F, Lepault F. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood. 1998;92:894–900.

    CAS  PubMed  Google Scholar 

  227. Lugli A, Iezzi G, Hostettler I, Muraro MG, Mele V, Tornillo L, et al. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer. 2010;103:382–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201:1781–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood. 2005;106:1232–9.

    CAS  PubMed  Google Scholar 

  230. Jung T, Castellana D, Klingbeil P, et al. CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia. 2009;11:1093–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 2010;107:18115–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Elaine F, Tudorita T, Geraldine G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.

    Google Scholar 

  233. Xie T, Li LH. Stem cells and their niche: an inseparable relationship. Development. 2007;134:2001–6.

    CAS  PubMed  Google Scholar 

  234. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.

    CAS  PubMed  Google Scholar 

  235. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–75.

    CAS  PubMed  Google Scholar 

  238. Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, et al. Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci U S A. 2009;106:12115–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138:285–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med. 2007;13:72–81.

    CAS  PubMed  Google Scholar 

  242. Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008;22:559–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology. 1997;26:634–42.

    CAS  PubMed  Google Scholar 

  244. Welling MM, Duijvestein M, Signore A, van der Weerd L. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol. 2011;226:1444–52.

    CAS  PubMed  Google Scholar 

  245. Li Z, Suzuki Y, Huang M, Cao F, Xie X, Connolly AJ, et al. Comparison of reporter gene and iron particle labelling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells. 2008;26:864–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Hoffman RM. Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging. J Biomed Opt. 2005;10:41202.

    PubMed  Google Scholar 

  247. Hoffman RM. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin Exp Metastasis. 2009;26:345–55.

    CAS  PubMed  Google Scholar 

  248. Graves E, Ripoll J, Weissleder R, Ntziachristos V. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys. 2003;30:901–11.

    CAS  PubMed  Google Scholar 

  249. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6:669–76.

    CAS  PubMed  Google Scholar 

  250. Steponkiene S, Kavaliauskiene S, Purviniene R, Rotomskis R, Juzenas P. Quantum dots affect expression of CD133 surface antigen in melanoma cells. Int J Nanomedicine. 2011;6:2437–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17:484–99.

    CAS  PubMed  Google Scholar 

  252. Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics. 2012;2:45–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–80.

    CAS  PubMed  Google Scholar 

  254. Vuu K, Xie J, McDonald MA, Bernardo M, Hunter F, Zhang Y, et al. Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem. 2005;16:995–9.

    CAS  PubMed  Google Scholar 

  255. Partlow K, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, et al. 19F magnetic resonance imaging for stem/progenitor celltracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007;21:1647–54.

    CAS  PubMed  Google Scholar 

  256. Yoshii Y, Furukawa T, Kiyono Y, Watanabe R, Mori T, Yoshii H, et al. Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol. 2011;38:151–7.

    CAS  PubMed  Google Scholar 

  257. Torrente Y, Gavina M, Belicchi M, Fiori F, Komlev V, Bresolin N. X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Lett. 2006;580:5759–64.

    CAS  PubMed  Google Scholar 

  258. Menk R, Schültke E, Hall C, Arfelli F, Astolfo A, Rigon L, et al. Gold nanoparticle labeling of cells is a sensitive method to investigate cell distribution and migration in animal models of human disease. Nanomedicine. 2011;7:647–54.

    CAS  PubMed  Google Scholar 

  259. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    PubMed Central  PubMed  Google Scholar 

  260. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor- initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    CAS  PubMed  Google Scholar 

  262. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.

    CAS  PubMed  Google Scholar 

  263. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    CAS  PubMed  Google Scholar 

  264. Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, et al. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol. 2002;20:2277–83.

    CAS  PubMed  Google Scholar 

  265. Ranson M, Hersey P, Thompson D, Beith J, McArthur GA, Haydon A, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. J Clin Oncol. 2007;25:2540–5.

    CAS  PubMed  Google Scholar 

  266. Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4:511–8.

    CAS  PubMed  Google Scholar 

  267. Moynahan ME, Cui TY, Jasin M. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 2001;61:4842–50.

    CAS  PubMed  Google Scholar 

  268. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44.

    CAS  PubMed  Google Scholar 

  269. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 2011;364:205–14.

    PubMed  Google Scholar 

  270. Gonçalves A. PARP inhibitors and breast cancer: update and perspective. Bull Cancer. 2012;99:441–51.

    PubMed  Google Scholar 

  271. Gieni RS. Polycomb group proteins in the DNA damage response: a link between radiation resistance and “stemness”. Cell Cycle. 2011;10:883–94.

    CAS  PubMed  Google Scholar 

  272. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.

    CAS  PubMed  Google Scholar 

  273. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.

    PubMed  Google Scholar 

  274. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Wang Z, Shi Q, Wang Z, Gu Y, Shen Y, Sun M, et al. Clinicopathologic correlation of cancer stem cell markers CD44, CD24, VEGF and HIF-1α in ductal carcinoma in situ and invasive ductal carcinoma of breast: an immunohistochemistry-based pilot study. Pathol Res Pract. 2011;207:505–13.

    CAS  PubMed  Google Scholar 

  276. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Lee JH, Shim JW, Choi YJ, Heo K, Yang K. The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncol Rep. 2013;29:917–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26:611–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:928–42.

    PubMed  Google Scholar 

  280. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–59.

    CAS  PubMed  Google Scholar 

  281. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.

    CAS  PubMed  Google Scholar 

  282. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–6.

    CAS  PubMed  Google Scholar 

  283. Purow B. Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol. 2012;727:305–19.

    Google Scholar 

  284. Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, et al. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res. 2009;69:7672–80.

    CAS  PubMed  Google Scholar 

  285. Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer. 2012;48:997–1003.

    CAS  PubMed  Google Scholar 

  286. Richter S, Bedard PL, Chen EX, Clarke BA, Tran B, Hotte SJ, et al. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors. Invest New Drugs. 2013;32(2):243–9.

    Google Scholar 

  287. Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5:168–77.

    CAS  PubMed  Google Scholar 

  288. Singh BN, Fu J, Srivastava RK, Shankar S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One. 2011;6:e27306.

    CAS  PubMed Central  PubMed  Google Scholar 

  289. Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 2009;137:1102–13.

    CAS  PubMed  Google Scholar 

  290. Axelson M, Liu K, Jiang X, He K, Wang J, Zhao H, et al. U.S. Food and drug administration approval: vismodegib for recurrent, locally advanced, or metastatic Basal cell carcinoma. Clin Cancer Res. 2012;19:2289–93.

    Google Scholar 

  291. LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17:2502–11.

    CAS  PubMed  Google Scholar 

  292. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326:572–4.

    CAS  PubMed  Google Scholar 

  293. Lauth M, Bergström A, Shimokawa T, Toftgård R. Inhibition of GLImediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A. 2007;104:8455–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Kasper M, Schnidar H, Neill GW, Hanneder M, Klingler S, Blaas L, et al. Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol Cell Biol. 2006;26:6283–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Dennler S, André J, Alexaki I, Li A, Magnaldo T, ten Dijke P, et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67:6981–6.

    CAS  PubMed  Google Scholar 

  296. Agur Z, Kirnasovsky OU, Vasserman G, Tencer-Hershkowicz L, Kogan Y, Harrison H, et al. Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: an experimentally supported mathematical model. PLoS One. 2011;6:e24225.

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Pode-Shakked N, Harari-Steinberg O, Haberman-Ziv Y, Rom-Gross E, Bahar S, Omer D, et al. Resistance or sensitivity of Wilms’ tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target. Oncogene. 2011;30:1664–80.

    CAS  PubMed  Google Scholar 

  298. King TD, Suto MJ, Li Y. The Wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 2012;113:13–8.

    CAS  PubMed  Google Scholar 

  299. Kendizorra E, Ahlborn K, Spitzner M, Rave-Fränk M, Emons G, Gaedcke J, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32:1824–31.

    Google Scholar 

  300. Zhao B, Li L, Guan KL. Hippo signaling at a glance. J Cell Sci. 2010;123:4001–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  301. Burris 3rd HA. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013;71:829–42.

    CAS  PubMed  Google Scholar 

  302. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956–67.

    CAS  PubMed  Google Scholar 

  303. Zhu Y, Zhang X, Liu Y, Zhang S, Liu J, Ma Y, et al. Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumour Biol. 2012;33:1349–62.

    CAS  PubMed  Google Scholar 

  304. Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, et al. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer. 2010;10:384.

    PubMed Central  PubMed  Google Scholar 

  305. Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, et al. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst. 2009;101:350–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Yasuda H, Tanaka K, Saigusa S, Toiyama Y, Koike Y, Okugawa Y, et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep. 2009;22:709–17.

    CAS  PubMed  Google Scholar 

  307. Chang JY, Zhang X, Vassiliev O, Gillin M, Mohan R. Proton therapy targets cancer stem cells in treatment-resistant non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2010;78(3 Suppl):S644.

    Google Scholar 

  308. Cui X, Oonishi K, Tsujii H, Yasuda T, Matsumoto Y, Furusawa Y, et al. Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays. Cancer Res. 2011;71:3676–87.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Mangoni MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mangoni, M., Sottili, M., Loi, M., Gerini, C., Meattini, I., Livi, L. (2015). Cancer Stem Cells: Biology and Potential Therapeutic Applications. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics