Skip to main content

Tumor Antigen and Epitope Identification for Preclinical and Clinical Evaluation

  • Chapter
  • First Online:
Cancer Immunology

Abstract

The aim of the immunotherapy and peptide therapeutics is to destroy cancer cells without eliciting lethal side effects and sustain the long-lasting immune memory. Targeting major histocompatibility complex (MHC) class I and class II epitopes and multiple tumor antigens has met with some clinical success, which is advantageous over single epitope vaccine strategies. Moreover, cancer immunotherapy and peptide therapeutics especially have demonstrated improved responses over that of the conventional treatments in patient groups where treatment options are limited. However, there are still obstacles to combating advanced cancer, where the immune system of the host is compromised. Thus implementing ways of overcoming states of immune tolerance, anergy, or suppression concomitant with a vaccine strategy to enhance adaptive immunity offers an attractive route for clinical intervention. Targeted therapies against defined tumor antigens involving the use of peptide-based vaccination offer potential for the future. Novel therapeutics relies on knowledge of peptide epitopes and awareness of how these can be used to activate appropriate tumor immunity. In this review we discuss many of the tumor antigens that have been discovered in the past two decades and their clinical utility alongside conventional cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boon T, Van den Eynde B. Tumour immunology. Curr Opin Immunol. 2003;15(2):129–30.

    Article  CAS  PubMed  Google Scholar 

  2. Schulz M, Zinkernagel RM, Hengartner H. Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci U S A. 1991;88(3):991–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Knittelfelder R, Riemer AB, Jensen-Jarolim E. Mimotope vaccination – from allergy to cancer. Expert Opin Biol Ther. 2009;9(4):493–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gordan JD, Vonderheide RH. Universal tumor antigens as targets for immunotherapy. Cytotherapy. 2002;4(4):317–27.

    Article  CAS  PubMed  Google Scholar 

  5. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323–37.

    Article  PubMed  Google Scholar 

  6. Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, Buttgereit F, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity. 2003;18(3):343–54.

    Article  CAS  PubMed  Google Scholar 

  7. Miles AK, Rogers A, Li G, Seth R, Powe D, McArdle SEB, et al. Identification of a novel prostate cancer-associated tumor antigen. Prostate. 2007;67(3):274–87.

    Article  PubMed  Google Scholar 

  8. Geng L, Deepak PA, Aija L, Fuming C, Amanda M, Robert CR, et al. Identification of Metastasis Associated Antigen 1 (MTA1) by serological screening of prostate cancer cDNA libraries. Open Biochem J. 2008;2:100–7.

    Article  PubMed  Google Scholar 

  9. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.

    Article  PubMed  Google Scholar 

  10. Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A, et al. Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. J Neuro Oncol. 2013;111(3):285–94.

    Article  CAS  Google Scholar 

  11. Melief CJ, van der Burg SH. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8(5):351–60.

    Article  CAS  PubMed  Google Scholar 

  12. Elliott T, Williams A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol Rev. 2005;207:89–99.

    Article  CAS  PubMed  Google Scholar 

  13. Wright CA, Kozik P, Zacharias M, Springer S. Tapasin and other chaperones: models of the MHC class I loading complex. Biol Chem. 2004;385(9):763–78.

    Article  CAS  PubMed  Google Scholar 

  14. Cresswell P. Assembly, transport, and function of Mhc class-Ii molecules. Annu Rev Immunol. 1994;12:259–93.

    Article  CAS  PubMed  Google Scholar 

  15. Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(3–4):213–9.

    Article  CAS  PubMed  Google Scholar 

  16. Schuler M, Nastke MD, Stevanović S. SYFPEITHI. Immunoinformatics. methods in molecular biology. 2007; 409: 75-93

    Article  CAS  Google Scholar 

  17. Sturniolo T, Bono E, Ding JY, Raddrizzani L, Tuereci O, Sahin U, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555–61.

    Article  CAS  PubMed  Google Scholar 

  18. Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential Hla-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152(1):163–75.

    CAS  PubMed  Google Scholar 

  19. Honeyman MC, Brusic V, Stone NL, Harrison LC. Neural network-based prediction of candidate T-cell epitopes. Nat Biotechnol. 1998;16(10):966–9.

    Article  CAS  PubMed  Google Scholar 

  20. Saxova P, Buus S, Brunak S, Kesmir C. Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol. 2003;15(7):781–7.

    Article  CAS  PubMed  Google Scholar 

  21. Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H. PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics. 2001;53(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  22. Schultz ES, Chapiro J, Lurquin C, Claverol S, Burlet-Schiltz O, Warnier G, et al. The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med. 2002;195(4):391–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M, et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med. 2001;194(1):1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hakenberg J, Nussbaum AK, Schild H, Rammensee HG, Kuttler C, Holzhutter HG, et al. MAPPP: MHC class I antigenic peptide processing prediction. Appl Bioinforma. 2003;2(3):155–8.

    CAS  Google Scholar 

  25. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S. Prediction of proteasome cleavage motifs by neural networks. Protein Eng. 2002;15(4):287–96.

    Article  CAS  PubMed  Google Scholar 

  26. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol. 2000;30(8):2216–25.

    Article  CAS  PubMed  Google Scholar 

  27. Pawelec G, Rees RC, Kiessling R, Madrigal A, Dodi A, Baxevanis C, et al. Cells and cytokines in immunotherapy and gene therapy of cancer. Crit Rev Oncog. 1999;10(1–2):83–127.

    CAS  PubMed  Google Scholar 

  28. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721–8.

    Article  CAS  PubMed  Google Scholar 

  29. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med. 2003;9(11):1377–82.

    Article  CAS  PubMed  Google Scholar 

  30. Welters MJ, Gouttefangeas C, Ramwadhdoebe TH, Letsch A, Ottensmeier CH, Britten CM, et al. Harmonization of the intracellular cytokine staining assay. Cancer Immunol Immunother. 2012;61(7):967–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Moser AC, Hage DS. Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis. 2010;2(4):769–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Müller L, McArdle S, Derhovanessian E, Flad T, Knights A, Rees R, et al. Current strategies for the identification of immunogenic epitopes of tumor antigens. Immunotherapy of cancer. Cancer drug discovery and development. 2006. p. 21-44.

    Google Scholar 

  33. Liu TC, Toriyabe Y, Berkman CE. Purification of prostate-specific membrane antigen using conformational epitope-specific antibody-affinity chromatography. Protein Expr Purif. 2006;49(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  34. Storkus WJ, Zeh HJ, Salter RD, Lotze MT. Identification of T-cell epitopes – rapid isolation of class-I – presented peptides from viable cells by mild acid elution. J Immunother. 1993;14(2):94–103.

    Article  CAS  Google Scholar 

  35. Castelli C, Storkus WJ, Maeurer MJ, Martin DM, Huang EC, Pramanik BN, et al. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med. 1995;181(1):363–8.

    Article  CAS  PubMed  Google Scholar 

  36. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood. 2001;98(10):2887–93.

    Article  CAS  PubMed  Google Scholar 

  37. Flad T, Spengler B, Kalbacher H, Brossart P, Baier D, Kaufmann R, et al. Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res. 1998;58(24):5803–11.

    CAS  PubMed  Google Scholar 

  38. Eggermont AM. Immunotherapy: vaccine trials in melanoma – time for reflection. Nat Rev Clin Oncol. 2009;6(5):256–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  40. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32.

    Article  CAS  PubMed  Google Scholar 

  41. Linley AJ, Mathieu MG, Miles AK, Rees RC, McArdle SE, Regad T. The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo. J Biol Chem. 2012;287(17):13633–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Srinivasan R, Wolchok JD. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med. 2004;2(1):12.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Murnane JP. Telomeres and chromosome instability. DNA Repair (Amst). 2006;5(9–10):1082–92.

    Article  CAS  Google Scholar 

  44. De Lange T. Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol. 2005;70:197–204.

    Article  PubMed  Google Scholar 

  45. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001;409(6820):633–7.

    Article  CAS  PubMed  Google Scholar 

  46. Saif JM, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, et al. Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol. 2013.

    Google Scholar 

  47. Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, et al. A new era in anticancer peptide vaccines. Cancer. 2010;116(9):2071–80.

    Google Scholar 

  48. McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, et al. Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J Exp Med. 2009;206(13):2967–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant – ‘the long and winding road’. Drug Discov Today. 2009;14(11–12):541–51.

    Article  PubMed  Google Scholar 

  50. Dubensky Jr TW, Reed SG. Adjuvants for cancer vaccines. Semin Immunol. 2010;22(3):155–61.

    Article  CAS  PubMed  Google Scholar 

  51. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Beran J. Safety and immunogenicity of a new hepatitis B vaccine for the protection of patients with renal insufficiency including pre-haemodialysis and haemodialysis patients. Expert Opin Biol Ther. 2008;8(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  53. Banzhoff A, Gasparini R, Laghi-Pasini F, Staniscia T, Durando P, Montomoli E, et al. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults. PLoS One. 2009;4(2):e4384.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Schwarz TF, Horacek T, Knuf M, Damman HG, Roman F, Drame M, et al. Single dose vaccination with AS03-adjuvanted H5N1 vaccines in a randomized trial induces strong and broad immune responsiveness to booster vaccination in adults. Vaccine. 2009;27(45):6284–90.

    Article  CAS  PubMed  Google Scholar 

  55. Galli G, Medini D, Borgogni E, Zedda L, Bardelli M, Malzone C, et al. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc Natl Acad Sci U S A. 2009;106(10):3877–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Vandepapeliere P, Horsmans Y, Moris P, Van Mechelen M, Janssens M, Koutsoukos M, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine. 2008;26(10):1375–86.

    Article  CAS  PubMed  Google Scholar 

  57. Khurana S, Chearwae W, Castellino F, Manischewitz J, King LR, Honorkiewicz A, et al. Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci Transl Med. 2010;2(15):15ra5.

    Article  PubMed  Google Scholar 

  58. Malherbe L, Mark L, Fazilleau N, McHeyzer-Williams LJ, McHeyzer-Williams MG. Vaccine adjuvants alter TCR-based selection thresholds. Immunity. 2008;28(5):698–709.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol Rev. 2008;222:357–68.

    Article  CAS  PubMed  Google Scholar 

  60. Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, et al. Trial watch: FDA-approved toll-like receptor agonists for cancer therapy. OncoImmunology. 2012;1(6):894–907.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Sjogren HO, Ankerst J. Effect of BCG and allogeneic tumor cells on adenovirus type 12 tumorigenesis in mice. Nature. 1969;221(5183):863–4.

    Article  CAS  PubMed  Google Scholar 

  62. Bekierkunst A, Levij IS, Yarkoni E. Suppression of urethan-induced lung adenomas in mice treated with trehalose-6,6-dimycolate (cord factor) and living bacillus Calmette Guerin. Science. 1971;174(4015):1240–2.

    Article  CAS  PubMed  Google Scholar 

  63. Zbar B, Tanaka T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science. 1971;172(3980):271–3.

    Article  CAS  PubMed  Google Scholar 

  64. Schiffman M, Wacholder S. Success of HPV vaccination is now a matter of coverage. Lancet Oncol. 2012;13(1):10–2.

    Article  PubMed  Google Scholar 

  65. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest. 2012;122(2):575–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Andersen MH, Junker N, Ellebaek E, Svane IM, Straten PT. Therapeutic cancer vaccines in combination with conventional therapy. J Biomed Biotechnol. 2010;2010, 237623.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. David Boocock for his valuable comments on the peptide sequencing and purification. This research is supported by the John and Lucille van Geest Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Rees PhD, BSc (Hons), FIBiol, MRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rane, S.S., Javad, J.M.S., Rees, R.C. (2015). Tumor Antigen and Epitope Identification for Preclinical and Clinical Evaluation. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics