Skip to main content

Novel Prognostic Biomarkers for Personalized Cancer Treatment

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Neoplastic pathologies are one of the most frequent causes of death in the world, and in spite of improvements in terms of therapy, the related mortality of tumor is high. One of the principal causes of this situation is the lack of clinical prognostic biomarkers, useful for the diagnostic and therapeutic monitoring and for the definition of personalized treatments that could lead to improvement in the therapeutic success rate.

In the neoplastic pathologies, identification of significant prognostic biomarkers is urgent to recognize the subjects that (a) have the specific pathophysiological characteristics which would benefit from adjuvant therapy in early disease stages and (b) to be stratified in clinical/therapeutic subgroups in the advanced pathological one. For these reasons, a valid contribute could be constituted by the improvement of the risk/benefit quantification in the selection of clinical procedures.

At this moment, the scientific research proposes innovative and promising biomarkers that are functional for this aim: recent technologies and software allow us to reveal the complexity of the biology of our physiological system in the healthy state and in the pathological one, defining, in this way, the significant biomarkers for the clinical/therapeutic monitoring of the pathological and physiological states. The intent of our chapter is, for this basis, to underline the importance of recent biomarkers for patient stratification in subgroups and the development of personalized therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Licastro F, Caruso C. Predictive diagnostics and personalized medicine for the prevention of chronic degenerative diseases. Immun Ageing. 2010;16:7.

    Google Scholar 

  2. Martin KJ, Fournier MV, Reddy GP, Pardee AB. A need for basic research on fluid-based early detection biomarkers. Cancer Res. 2010;70:5203–6.

    Article  CAS  PubMed  Google Scholar 

  3. Catenacci DV, Kozloff M, Kindler HL, Polite B. Personalized colon cancer care in 2010. Semin Oncol. 2011;38:284–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rougier P, Bugat R, Douillard JY, Culine S, Suc E, Brunet P, et al. Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naive patients and patients pretreated with fluorouracil-based chemotherapy. J Clin Oncol. 1997;15:251–60.

    CAS  PubMed  Google Scholar 

  5. Grothey A. Adjuvant chemotherapy in colon cancer – is it worth it? Eur J Cancer. 2010;46:1768–9.

    Article  PubMed  Google Scholar 

  6. Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009;27:872–7.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Quasar Collaborative G, Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370:2020–9.

    Article  CAS  Google Scholar 

  8. Candore G, Balistreri CR, Listı F, Grimaldi MP, Vasto S, Colonna-Romano G, Franceschi C, Lio D, Caselli G, Caruso C. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006;1089:516–37.

    Article  PubMed  Google Scholar 

  9. Franceschi C, Motta L, Motta M, Malaguarnera M, Capri M, Vasto S, et al. The extreme longevity: the state of the art in Italy. Exp Gerontol. 2008;43:45–52.

    Article  PubMed  Google Scholar 

  10. Liu LY, Schaub MA, Sirota M, Butte AJ. Sex differences in disease risk from reported genome-wide association study findings. Hum Genet. 2012;131:353–64.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Grossman CJ. Possible underlying mechanisms of sexual dimorphism in the immune response, fact and hypothesis. J Steroid Biochem. 1989;34:241–51.

    Article  CAS  PubMed  Google Scholar 

  12. Schuurs AH, Verhuel HA. Effects of gender and sex steroids on the immune response. J Steroid Biochem. 1990;35:157–72.

    Article  CAS  PubMed  Google Scholar 

  13. Cannon JC, St-Pierre BA. Gender differences in host defense mechanisms. J Psychiat Res. 1997;31:99–113.

    Article  CAS  PubMed  Google Scholar 

  14. Rhodes K, Scott A, Markhan RL, Monk-Jones ME. Immunological sex differences. Ann Rheum Dis. 1969;28:104–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Butterworth MB, McClellan B, Alansmith M. Influence of sex on immunoglobulin levels. Nature. 1967;214:1224–5.

    Article  CAS  PubMed  Google Scholar 

  16. Terres G, Morrison SL, Habicht GH. Quantitative difference in the immune response between male and female mice. Proc Soci Exp Biol Med. 1968;127:664–7.

    Article  CAS  Google Scholar 

  17. Morell V. Zeroing in on how hormones affect the immune system. Science. 1995;269:773–5.

    Article  CAS  PubMed  Google Scholar 

  18. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez E, Bach JF, Dardenne M. Sex steroids, glucocorticoids, stress and autoimmunity. J Steroid Biochem Mol Biol. 1991;40:619–37.

    Article  CAS  PubMed  Google Scholar 

  19. Grossman CJ. Regulation of the immune system by sex steroids. Endocr Rev. 1984;5:435–55.

    Article  CAS  PubMed  Google Scholar 

  20. Pietschmann P, Gollob E, Brosch S, Hahn P, Kudlacek S, Willheim M, et al. The effect of age and gender on cytokine production by human peripheral blood mononuclear cells and markers of bone metabolism. Exp Gerontol. 2003;38:1119–27.

    Article  CAS  PubMed  Google Scholar 

  21. Khosla S, Melton LJ, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role of bioavailable estrogen. J Clin Endocrinol Metab. 1998;83:2266–74.

    CAS  PubMed  Google Scholar 

  22. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male. 2002;5:98–102.

    Article  CAS  PubMed  Google Scholar 

  23. Dolomie-Fagour L, Gatta B, Nguyen TDT, Corcuff JB. Bioavailable estradiol in man: relationship with age and testosterone. Clin Chim Acta. 2008;398:145–7.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure – activity relationship of various endogenous estrogen metabolites for human estrogen receptor α and β subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006;147:4132–50.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, McMurray RW. Effects of estrogen subtype-selective agonists on immune functions in ovariectomized mice. Int Immunopharmacol. 2006;6:1413–23.

    Article  CAS  PubMed  Google Scholar 

  26. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2:777–80.

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy M. The “gender gap” in autoimmune disease. Lancet. 2000;356:1088.

    Article  CAS  PubMed  Google Scholar 

  28. Beageley KW, Gockel CM. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbi. 2003;38:13–22.

    Article  CAS  Google Scholar 

  29. Gleicher N. Some thoughts on the reproductive autoimmune failure syndrome (RAFS) and TH- versus TH-2 immune responses. Am J Reprod Immunol. 2002;48:252–4.

    Article  PubMed  Google Scholar 

  30. Yakoo T, Takakuwa K, Ooki I, Kikuchi A, Tamura M, Tanaka K. Alterations of TH1 and TH2 cells by intracellular cytokine detection in patients with unexplained recurrent abortion before and after immunotherapy with the husband’s mononuclear cells. Fertil Steril. 2006;85:1452–8.

    Article  Google Scholar 

  31. Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafè M, et al. Gender-specific association between -1082 IL-10 promoter polymorphism and longevity. Genes Immun. 2002;3:30–3.

    Article  CAS  PubMed  Google Scholar 

  32. Franceschi C, Motta L, Valensin S, Rapisarda R, Franzone A, Berardelli M, et al. Do men and women follow different trajectories to reach extreme longevity? Italian Multicenter Study on Centenarians. Aging. 2002;12:77–84.

    Google Scholar 

  33. Balistreri CR, Candore G, Accardi G, Bova M, Buffa S, Bulati M, et al. Genetics of longevity. Data from the studies on Sicilian centenarians. Immun Ageing. 2012;9(1):8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Palmeri M, Misiano G, Malaguarnera M, Forte GI, Vaccarino L, Milano S, et al. Cytokine serum profile in a group of Sicilian nonagenarians. J Immunoass Immunochem. 2012;33:82–90.

    Article  CAS  Google Scholar 

  35. Pellegrini P, Contasta I, Del Beato T, Ciccone F, Berghella AM. Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol. 2011;2011:819724.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Contasta I, Totaro R, Pellegrini P, Del Beato T, Berghella AM. A gender-related action of IFNβ-therapy was found in multiple sclerosis. J Transl Med. 2012;10:223.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Berghella AM, Contasta I, Del Beato T, Ciccone F, Pellegrini P. The discovery of how gender influences age immunological mechanisms in health and disease, and the identification of ageing gender-specific biomarkers, could lead to specifically tailored treatment and ultimately improve therapeutic success rates. Immun Ageing. 2012;9(1):24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 1994;15:43–58.

    Article  Google Scholar 

  39. Thomson A. The cytokine handbook. San Diego: Academic; 1994.

    Google Scholar 

  40. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  41. Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon VA, Galileos G, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A. 2008;105:18460–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med. 2009;206:1653–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Oukka M. Th17 cells in immunity and autoimmunity. Ann Rheum Dis. 2008;67:26–9.

    Article  CAS  Google Scholar 

  44. Cua DJ, Kastelein RA. TGFß a ‘double agent’ in the immune pathology war. Nat Immunol. 2006;7:557–9.

    Article  CAS  PubMed  Google Scholar 

  45. Korn T, Anderson AC, Bettelli E, Oukka M. The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J Neuroimmunol. 2007;191:51–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Greer JM, McCombe PA. Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol. 2011;234:7–18.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Sonobe Y, Akahori T, Jin S, Kawanokuchi J, Noda M, et al. IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J Immunol. 2011;186:4415–21.

    Article  CAS  PubMed  Google Scholar 

  48. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L. Interleukin-17 production in central nervous system infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172:146–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, et al. Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biologic Chemist. 2004;279:38563–70.

    Article  CAS  Google Scholar 

  51. Ortona E, Margutti P, Matarrese P, Franconi F, Malorni W. Redox state, cell death and autoimmune diseases: a gender perspective. Autoimmun Rev. 2008;7:579–84.

    Article  CAS  PubMed  Google Scholar 

  52. Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol. 2006;46:215–34.

    Article  CAS  PubMed  Google Scholar 

  53. Song JJ, Lee YJ. Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal regulating kinase 1. Biochem J. 2003;373:845–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim SH, Oh J, Choi JY, Jang JY, Kang MW, Lee CE. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production. BMC Immunol. 2008;9:64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Gius D, Botero A, Shah S, Curry HA. Intracellular oxidation/reduction status in the regulation of transcription factors NF-B and AP-1. Toxicol Lett. 1999;106:93–106.

    Article  CAS  PubMed  Google Scholar 

  56. Halliwell B, Gutteridge JM. Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Human Toxicol. 1988;7:7–13.

    Article  CAS  Google Scholar 

  57. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism? Ann NY Acad Sci. 2000;899:349–62.

    Article  CAS  PubMed  Google Scholar 

  58. Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295:49–68.

    Google Scholar 

  59. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol. 2005;167:627–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H. Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Blood. 2000;95:2015–23.

    CAS  PubMed  Google Scholar 

  61. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66:5527–36.

    Article  CAS  PubMed  Google Scholar 

  62. Furuke K, Sasada T, Ueda-Taniguchi Y, Yamauchi A, Inamoto T, Yamaoka Y, et al. Thioredoxin reductase plays a critical role in IFN retinoid-mediated tumor-growth control in vivo. Clin Cancer Res. 2002;8:3210–8.

    Google Scholar 

  63. Sun Y, Rigas B. Role of intracellular redox status in apoptosis induction of human T-cell leukemia virus type I-infected lymphocytes by 13-cis-retinoic acid. Cancer Res. 1997;57:4916–23.

    Google Scholar 

  64. Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ, et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 2008;68:2132–44.

    Article  CAS  PubMed  Google Scholar 

  65. Sun Y, Rigas B. The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res. 2000;68:8269–77.

    Article  CAS  Google Scholar 

  66. Lechner S, Müller-Ladner U, Schlottmann K, Jung B, McClelland M, Rüschoff J, et al. Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis. 2002;23:1281–8.

    Article  CAS  PubMed  Google Scholar 

  67. Berggren M, Gallegos A, Gasdaska JR, Gasdaska PY, Warneke J, Powis G. Thioredoxin and thioredoxin. Anticancer Res. 1996;6:3459–66.

    Google Scholar 

  68. Hombach A, Jung W, Pohl C, Renner C, Sahin U, Schmits R, et al. A CD16/CD30 bispecific monoclonal antibody induces lysis of Hodgkin’s cells by unstimulated natural killer cells in vitro and in vivo. Int J Cancer. 1993;55:830–6.

    Article  CAS  PubMed  Google Scholar 

  69. Renner C, Hartmann F, Jung W, Deisting C, Juwana M, Pfreundschuh M. Initiation of humoral and cellular immune responses in patients with refractory Hodgkin’s disease by treatment with an anti-CD16/CD30 bispecific antibody. Cancer Immunol Immunother. 2000;49:173–80.

    Article  CAS  PubMed  Google Scholar 

  70. Sahin U, Kraft-Bauer S, Ohnesorge S, Pfreundschuh M, Renner C. Interleukin-12 increases bispecific-antibody-mediated natural killer cell cytotoxicity against human tumors. Cancer Immunol Immunother. 1996;42:9–14.

    Article  CAS  PubMed  Google Scholar 

  71. Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000;346:1–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Becker K, Gromer S, Schirmer RH, Muller S. Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem. 2000;267:6118–25.

    Article  CAS  PubMed  Google Scholar 

  73. Powis G, Kirkpatrick DL, Angulo M, Baker A. Thioredoxin redox control of cell growth and death and the effects of inhibitors. Chem Biol Interact. 1998;112:23–34.

    Article  Google Scholar 

  74. Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-_B, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Comm. 2000;274:177–82.

    Article  CAS  PubMed  Google Scholar 

  75. Hirota K, Nakamura H, Arai T, Ishii H, Bai J, Itoh T, et al. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. Biochem Biophys Res Comm. 2000;275:825–30.

    Article  CAS  PubMed  Google Scholar 

  76. Schwertassek U, Balmer Y, Gutscher M, Weingarten L, Preuss M, Engelhard J, et al. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin 1. EMBO J. 2007;26:3086–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Berghella AM, Pellegrini P, Del Beato T, Ciccone F, Contasta I. The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy. Cancer Immunol Immunother. 2011;60:1373–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Masutani H, Hirota K, Sasada T, Ueda-Taniguchi Y, Taniguchi Y, Sono H, Yodoi J. Transactivation of an inducible anti-oxidative stress protein human thioredoxin by HTLV-I tax. Immunol Lett. 1996;54:67–71.

    Article  CAS  PubMed  Google Scholar 

  79. Patenaude A, Ven Murthy MR, Mirault ME. Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. J Biol Chem. 2004;279:27302–14.

    Article  CAS  PubMed  Google Scholar 

  80. Miranda-Vizuete A, Sadek CM, Jimenez A, Krause WJ, Sutovsky P, Oko R. The mammalian testis-specific thioredoxin system. Antioxid Redox Signal. 2004;6:25–40.

    Article  CAS  PubMed  Google Scholar 

  81. Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med. 2000;29:312–22.

    Article  CAS  PubMed  Google Scholar 

  82. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal- regulating kinase (ASK) 1. EMBO J. 1998;17:2596–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science. 2008;320:1050–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Biguet C, Wakasugi N, Mishal Z, Holmgren A, Chouaib S, Tursz T, Wakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein C-dependent mechanism. J Biol Chem. 1994;269:28865–70.

    CAS  PubMed  Google Scholar 

  85. Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reducing of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992;20:3821–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997;94:3633–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci U S A. 1994;91:1672–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268:11380–8.

    CAS  PubMed  Google Scholar 

  89. Wakasugi N, Tagaya Y, Wakasug H, Mitsui A, Maeda M, Yodoi J, et al. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A. 1990;87:8282–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretorypathway. J Biol Chem. 1992;267:24161–4.

    CAS  PubMed  Google Scholar 

  91. Ericson ML, Wendel HV, Holmgren A, Rosen A. Secretion of thioredoxin after in vitro activation of human B cells. Lymphokine Cytokine Res. 1992;11:201–7.

    CAS  PubMed  Google Scholar 

  92. Bertini R, Howard OMZ, Dong H, Oppenheim JJ, Bizzarri C, Sergi R, et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes and T cells. J Exp Med. 1999;189:1783–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Gromer S, Urig S, Becker K. The thioredoxin system-from science to clinic. Med Res Rev. 2004;24:40–89.

    Article  CAS  PubMed  Google Scholar 

  94. Kusmartsev S, Eruslanov E, Kübler H, Tseng T, Sakai Y, Su Z, et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol. 2008;181:346–53.

    Article  CAS  PubMed  Google Scholar 

  95. Alzona M, Jack HM, Fisher RI, Ellis TM. CD30 defines a subset of activated human T cells that produce IFN gamma and IL5 and exhibit enhanced B cell helper activity. J Immunol. 1994;153:2861–7.

    CAS  PubMed  Google Scholar 

  96. Muta H, Boise LH, Fang L, Podack ER. CD30 signals integrate expression of cytotoxic effector molecules, lymphocyte trafficking signals, and signals for proliferation and apoptosis. J Immunol. 2000;165:5105–11.

    Article  CAS  PubMed  Google Scholar 

  97. McDonald PP, Cassatella MA, Bald A, Maggi E, Romagnani S, Gruss HJ, et al. CD30 ligation induces nuclear factor kappa B activation in human T cell lines. Eur J Immunol. 1995;25:2870–6.

    Article  CAS  PubMed  Google Scholar 

  98. Contasta I, Totaro R, Berghella AM, Pellegrini P, Del Beato T, Carolei A, Adorno D. Soluble CD30: a biomarker for evaluating the clinical risk versus benefit of IFNβ1A treatment in multiple sclerosis patients. Int J Immunopathol Pharmacol. 2010;23:213–26.

    CAS  PubMed  Google Scholar 

  99. Del Beato T, Berghella AM, Pellegrini P, Adorno D, Casciani CU. The role of the soluble CD30 serum level in colorectal cancer: a possible marker for a patient subset which could benefit from IL 2 biotherapy. Cancer Biother Radiopharm. 1997;12:297–304.

    Article  Google Scholar 

  100. Pellegrini P, Berghella AM, Contasta I, Adorno D. CD30 antigen: not a physiological marker for TH2 cells but an important costimulator molecule in the regulation of the balance between TH1/TH2 response. Transplant Immunol. 2003;12:49–61.

    Article  CAS  Google Scholar 

  101. Pellegrini P, Totaro R, Contasta I, Berghella AM, Carolei A, Adorno D. CD30 antigen and multiple sclerosis: CD30 an important costimulator molecule and marker for a regulatory subpopulation of dendritic cells involved in maintaining the physiological balance between TH1/TH2 immune response and tolerance; the role of IFNγ1a in re establishing this regulation in multiple sclerosis. Neuroimmunomodulation. 2005;12:220–34.

    Article  CAS  PubMed  Google Scholar 

  102. Hargreaves PG, Al-Shamkhani A. A soluble CD30 blocks transmembrane signaling by CD30. Eur J Immunol. 2002;32:163–73.

    Article  CAS  PubMed  Google Scholar 

  103. Pellegrini P, Contasta I, Berghella AM, Del Beato T, Adorno D. Chapter 14. Classification of cancer stage using the immune system. In: Hayat MA, editor. Methods of cancer diagnosis, Therapy and prognosis, vol 7. Springer Publishing Company; 2010. ISBN: 978-90-481-3185-3.

    Google Scholar 

  104. Janes KA, Yaffe MB. Data driven modelling of signal transduction networks. Nat Rev. 2006;7:820–8.

    Article  CAS  Google Scholar 

  105. Bray D. Reasoning for results. Nature. 2001;412:863.

    Article  CAS  PubMed  Google Scholar 

  106. Janes KA, Lauffenburger DA. A biological approach to computational models of proteomic networks. Curr Opin Chem Biol. 2006;10:73–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Berghella PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Contasta, I. et al. (2015). Novel Prognostic Biomarkers for Personalized Cancer Treatment. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics