Skip to main content

Polarization of Tumor Milieu: Therapeutic Implications

  • Chapter
  • First Online:
Cancer Immunology

Abstract

During neoplastic progression, cancer cells recruit inflammatory cells (monocytes, neutrophils, mast, and dendritic cells, etc.), which become “educated” under the influence of factors released by cancer cells (mainly cytokines). As a consequence, the former lose their ability to present antigens. Instead, they become cells involved in remodeling of extracellular matrix and stimulate the formation of blood vessels (angiogenesis). Proangiogenic factors released by inflammatory cells act as immunosuppressants and the tumor milieu becomes proangiogenic and immunosuppressive. Latest studies have demonstrated the possibility of reverting such proangiogenic/immunosuppressive microenvironment which inhibits tumor growth. Reverted tumor microenvironment becomes anti-angiogenic and immunostimulatory. Reversal of tumor microenvironment is especially feasible with combinations of anti-angiogenic and immunomodulatory factors. For instance, combinations of VEGF, VEGFR2, or TGF-β activity inhibitors with immunostimulants such as anticancer vaccines, CpG sequences, or IL-12 were effective in inhibiting growth of experimental tumors. In our hands, a DNA vaccine directed against endoglin (CD105), a tumor vascular endothelial cell-surface protein, when combined with IL-12, led to a ca. 30 % cure rate in mice bearing experimental melanoma tumors. It appears that attempts to therapeutically revert tumor microenvironment might merit further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological. Proc Nat Rev Cancer. 2006;6(12):924–35.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem. 2009;107(6):1053–62.

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  CAS  PubMed  Google Scholar 

  5. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72(10):2473–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33(3):119–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chow MT, Möller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22(1):23–32.

    Google Scholar 

  8. Allavena P, Germano G, Marchesi F, Mantovani A. Chemokines in cancer related inflammation. Exp Cell Res. 2011;317(5):664–73.

    Article  CAS  PubMed  Google Scholar 

  9. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.

    Article  CAS  PubMed  Google Scholar 

  10. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Van Beijnum J, Nowak-Sliwinska P, Van Den Boezem E, Hautvast P, Buurman W, Griffioen A. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. 2013;32(3):363–74.

    Article  PubMed  Google Scholar 

  12. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  13. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  14. Hao N-B, Lü M-H, Fan Y-H, Cao Y-L, Zhang Z-R, Yang S-M. Macrophages in tumor microenvironments and the progression of tumors. J Immunol Res. 2012;2012:948098.

    Google Scholar 

  15. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–61.

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Fact Rev. 2010;21(1):27–39.

    Article  CAS  Google Scholar 

  17. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  18. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46.

    Article  CAS  PubMed  Google Scholar 

  20. Szala S, Mitrus I, Sochanik A. Can inhibition of angiogenesis and stimulation of immune response be combined into a more effective antitumor therapy? Cancer Immunol Immunother. 2010;59(10):1449–55.

    Article  CAS  PubMed  Google Scholar 

  21. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, et al. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev. 2011;30(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  22. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Terme M, Colussi O, Marcheteau E, Tanchot C, Tartour E, Taieb J. Modulation of immunity by antiangiogenic molecules in cancer. J Immunol Res. 2012;2012:492920.

    Google Scholar 

  24. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    Article  CAS  PubMed  Google Scholar 

  25. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol. 2005;174(1):215–22.

    Article  CAS  PubMed  Google Scholar 

  26. Benkhoucha M, Santiago-Raber M-L, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+ Foxp3+ regulatory T cells. Proc Natl Acad Sci. 2010;107(14):6424–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol. 2010;10(8):554–67.

    Article  CAS  PubMed  Google Scholar 

  28. Allavena P, Sica A, Garlanda C, Mantovani A. The Yin–Yang of tumor–associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222(1):155–61.

    Google Scholar 

  29. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111(12):5637–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shurin GV, Ouellette CE, Shurin MR. Regulatory dendritic cells in the tumor immunoenvironment. Cancer Immunol Immunother. 2012;61(2):223–30.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Dalton DK, Noelle RJ. The roles of mast cells in anticancer immunity. Cancer Immunol Immunother. 2012;61(9):1511–20.

    Article  CAS  PubMed  Google Scholar 

  33. Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG, et al. CD4+ CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+mice. Cancer Res. 2005;65(10):3998–4004.

    Article  CAS  PubMed  Google Scholar 

  34. Ebata K, Shimizu Y, Nakayama Y, Minemura M, Murakami J, Kato T, et al. Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol. 2006;176(7):4113–24.

    Article  CAS  PubMed  Google Scholar 

  35. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932–43.

    Article  CAS  PubMed  Google Scholar 

  36. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Noonan DM, Barbaro ADL, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev. 2008;27(1):31–40.

    Article  PubMed  Google Scholar 

  38. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46.

    CAS  PubMed  Google Scholar 

  40. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med. 2008;205(6):1261–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Nat Acad Sci. 2012;109(6):2066–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shirota Y, Shirota H, Klinman DM. Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol. 2012;188(4):1592–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011;19(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Tu GH, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF–secreting cancer immunotherapy. Clin Cancer Res. 2006;12(22):6808–16.

    Article  CAS  PubMed  Google Scholar 

  46. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res. 2007;13(13):3951–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22.

    Article  CAS  PubMed  Google Scholar 

  48. Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res. 2009;15(21):6551–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Terabe M, Ambrosino E, Takaku S, O’Konek JJ, Venzon D, Lonning S, et al. Synergistic enhancement of CD8+ T cell–mediated tumor vaccine efficacy by an anti–transforming growth factor-β monoclonal antibody. Clin Cancer Res. 2009;15(21):6560–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Takaku S, Terabe M, Ambrosino E, Peng J, Lonning S, McPherson JM, et al. Blockade of TGF–β enhances tumor vaccine efficacy mediated by CD8+ T cells. Int J Cancer. 2010;126(7):1666–74.

    Google Scholar 

  51. Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, et al. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther. 2013;20(3):262–73.

    Article  CAS  PubMed  Google Scholar 

  52. Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86(5):1105–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Grants No. N N401 587540 and UMO-2013/11/B/NZ4/04468 from the Ministry of Science and Higher Education (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Szala PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szala, S., Jarosz-Biej, M., Cichoń, T., Smolarczyk, R., Sochanik, A. (2015). Polarization of Tumor Milieu: Therapeutic Implications. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics