Skip to main content

Photodynamic Therapy and Antitumor Immune Response

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Photodynamic therapy (PDT) is the combination of photosensitizers and visible light used as a treatment for cancer and infections. As a direct consequence of PDT, reactive oxygen species and other “danger signals” activate the innate immune system and by doing so generate acute inflammation. This cascade of effects is followed by priming of tumor-specific T lymphocytes that have the potential to destroy distant untreated tumor cells, in addition to developing an innate memory “shield” that can be effective in combating recurrence of the cancer. Moreover, PDT can be successfully applied for overcoming the escaping mechanisms employed by progressing tumors attempting to evade immune attack. Furthermore, PDT can assert a beneficial effect on cases of bacterial infection through attracting and accumulating neutrophils into the infected regions rather than by directly killing the bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergh J. Quo Vadis with targeted drugs in the 21st century? J Clin Oncol. 2009;27(1):2–5.

    PubMed  Google Scholar 

  2. Simard EP, Ward EM, Siegel R, Jemal A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. 2012;62(2):118–28.

    PubMed  Google Scholar 

  3. Siegel RL, Ward EM, Jemal A. Trends in colorectal cancer incidence rates in the United States by tumor location and stage, 1992–2008. Cancer Epidemiol Biomarkers Prev. 2012;21(3):411–6.

    PubMed  Google Scholar 

  4. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    PubMed  Google Scholar 

  5. Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst. 2009;101(15):1044–8.

    PubMed Central  PubMed  Google Scholar 

  6. Sheridan C. Fresh from the biologic pipeline-2009. Nat Biotechnol. 2010;28(4):307–10.

    CAS  PubMed  Google Scholar 

  7. Simon R. Lost in translation: problems and pitfalls in translating laboratory observations to clinical utility. Eur J Cancer. 2008;44(18):2707–13.

    PubMed Central  PubMed  Google Scholar 

  8. La Porta CA. Cellular targets for anticancer strategies. Curr Drug Targets. 2004;5(4):347–55.

    PubMed  Google Scholar 

  9. Monzani E, Shtil AA, La Porta CA. The water channels, new druggable targets to combat cancer cell survival, invasiveness and metastasis. Curr Drug Targets. 2007;8(10):1132–7.

    CAS  PubMed  Google Scholar 

  10. La Porta CA. Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets. 2009;9(3):391–7.

    PubMed  Google Scholar 

  11. Laconi E, Pani P, Farber E. The resistance phenotype in the development and treatment of cancer. Lancet Oncol. 2000;1:235–41.

    CAS  PubMed  Google Scholar 

  12. Bianco R, Damiano V, Gelardi T, Daniele G, Ciardiello F, Tortora G. Rational combination of targeted therapies as a strategy to overcome the mechanisms of resistance to inhibitors of EGFR signaling. Curr Pharm Des. 2007;13(33):3358–67.

    CAS  PubMed  Google Scholar 

  13. Bianco R, Garofalo S, Rosa R, Damiano V, Gelardi T, Daniele G, et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer. 2008;98(5):923–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Gelardi T, Caputo R, Damiano V, Daniele G, Pepe S, Ciardiello F, et al. Enzastaurin inhibits tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer. 2008;99(3):473–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bianco R, Rosa R, Damiano V, Daniele G, Gelardi T, Garofalo S, et al. Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res. 2008;14(16):5069–80.

    CAS  PubMed  Google Scholar 

  16. Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96(1):1–8.

    CAS  PubMed  Google Scholar 

  17. Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Res. 2003;23(5A):3591–600.

    PubMed  Google Scholar 

  18. Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10(3):148–54.

    CAS  PubMed  Google Scholar 

  19. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    CAS  PubMed  Google Scholar 

  20. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.

    CAS  PubMed  Google Scholar 

  21. Moan J, Berg K, Kvam E, Western A, Malik Z, Ruck A, et al. Intracellular localization of photosensitizers. Ciba Found Symp. 1989;146:95–107.

    Google Scholar 

  22. Gollmer A, Besostri F, Breitenbach T, Ogilby PR. Spatially-resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: correlating cell response to the site of localized irradiation. Free Radic Res. 2013;47(9):718–30.

    CAS  PubMed  Google Scholar 

  23. Pimenta FM, Jensen RL, Holmegaard L, Esipova TV, Westberg M, Breitenbach T, et al. Singlet-oxygen-mediated cell death using spatially-localized two-photon excitation of an extracellular sensitizer. J Phys Chem B. 2012;116(34):10234–46.

    CAS  PubMed  Google Scholar 

  24. Ogilby PR. Singlet oxygen: there is still something new under the sun, and it is better than ever. Photochem Photobiol Sci. 2010;9(12):1543–60.

    CAS  PubMed  Google Scholar 

  25. Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbiol Rev. 2013;37(6):955–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther. 2005;4(2):187–94.

    CAS  PubMed  Google Scholar 

  27. Xue LY, Chiu SM, Oleinick NL. Atg7 deficiency increases resistance of MCF-7 human breast cancer cells to photodynamic therapy. Autophagy. 2010;6(2):248–55.

    CAS  PubMed  Google Scholar 

  28. Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996;64(3):469–85.

    CAS  PubMed  Google Scholar 

  29. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21.

    CAS  PubMed  Google Scholar 

  30. Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta. 2004;1704(2):59–86.

    CAS  PubMed  Google Scholar 

  31. Granville DJ, McManus BM, Hunt DW. Photodynamic therapy: shedding light on the biochemical pathways regulating porphyrin-mediated cell death. Histol Histopathol. 2001;16(1):309–17.

    CAS  PubMed  Google Scholar 

  32. Girotti AW. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B. 2001;63(1–3):103–13.

    CAS  PubMed  Google Scholar 

  33. Obana A, Gohto Y, Kaneda K, Nakajima S, Takemura T, Miki T. Selective occlusion of choroidal neovascularization by photodynamic therapy with a water-soluble photosensitizer, ATX-S10. Lasers Surg Med. 1999;24(3):209–22.

    CAS  PubMed  Google Scholar 

  34. Kramer M, Miller JW, Michaud N, Moulton RS, Hasan T, Flotte TJ, et al. Liposomal benzoporphyrin derivative verteporfin photodynamic therapy. Selective treatment of choroidal neovascularization in monkeys. Ophthalmology. 1996;103(3):427–38.

    CAS  PubMed  Google Scholar 

  35. Tang G, Hyman S, Schneider Jr JH, Giannotta SL. Application of photodynamic therapy to the treatment of atherosclerotic plaques. Neurosurgery. 1993;32(3):438–43.

    CAS  PubMed  Google Scholar 

  36. Hsiang YN, Crespo MT, Machan LS, Bower RD, Todd ME. Photodynamic therapy for atherosclerotic stenoses in Yucatan miniswine. Can J Surg. 1994;37(2):148–52.

    CAS  PubMed  Google Scholar 

  37. Cecic I, Stott B, Korbelik M. Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy. Int Immunopharmacol. 2006;6(8):1259–66.

    CAS  PubMed  Google Scholar 

  38. Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med. 2006;38(5):500–8.

    PubMed  Google Scholar 

  39. Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta. 2010;1805(1):53–71.

    CAS  PubMed  Google Scholar 

  40. Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis. 2010;15(9):1050–71.

    CAS  PubMed  Google Scholar 

  41. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5.

    CAS  PubMed  Google Scholar 

  42. Manfredi AA, Capobianco A, Bianchi ME, Rovere-Querini P. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit Rev Immunol. 2009;29(1):69–86.

    CAS  PubMed  Google Scholar 

  43. Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br J Cancer. 1995;71(3):549–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett. 1999;137(1):91–8.

    CAS  PubMed  Google Scholar 

  45. de Vree WJ, Essers MC, Koster JF, Sluiter W. Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. Cancer Res. 1997;57(13):2555–8.

    PubMed  Google Scholar 

  46. Chen WR, Huang Z, Korbelik M, Nordquist RE, Liu H. Photoimmunotherapy for cancer treatment. J Environ Pathol Toxicol Oncol. 2006;25(1–2):281–91.

    CAS  PubMed  Google Scholar 

  47. Kousis PC, Henderson BW, Maier PG, Gollnick SO. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res. 2007;67(21):10501–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sun J, Cecic I, Parkins CS, Korbelik M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem Photobiol Sci. 2002;1(9):690–5.

    CAS  PubMed  Google Scholar 

  49. Gollnick SO, Evans SS, Baumann H, Owczarczak B, Maier P, Vaughan L, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer. 2003;88(11):1772–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res. 1997;57(18):3904–9.

    Google Scholar 

  51. Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin Investig Drugs. 1998;7(1):57–64.

    CAS  PubMed  Google Scholar 

  52. Henderson BW, Gollnick SO, Snyder JW, Busch TM, Kousis PC, Cheney RT, et al. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004;64(6):2120–6.

    CAS  PubMed  Google Scholar 

  53. Yusuf N, Katiyar SK, Elmets CA. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naive recipients. Photochem Photobiol. 2008;84(2):366–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56(24):5647–52.

    CAS  PubMed  Google Scholar 

  55. Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 1996;98(7):1633–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Maeurer MJ, Gollin SM, Storkus WJ, Swaney W, Karbach J, Martin D, et al. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6. Clin Cancer Res. 1996;2(4):641–52.

    CAS  PubMed  Google Scholar 

  57. Daayana S, Winters U, Stern PL, Kitchener HC. Clinical and immunological response to photodynamic therapy in the treatment of vulval intraepithelial neoplasia. Photochem Photobiol Sci. 2011;10(5):802–9.

    CAS  PubMed  Google Scholar 

  58. Zawislak A, Donnelly RF, McCluggage WG, Price JH, McClelland HR, Woolfson AD, et al. Clinical and immunohistochemical assessment of vulval intraepithelial neoplasia following photodynamic therapy using a novel bioadhesive patch-type system loaded with 5-aminolevulinic acid. Photodiagnosis Photodyn Ther. 2009;6(1):28–40.

    CAS  PubMed  Google Scholar 

  59. Canti GL, Lattuada D, Nicolin A, Taroni P, Valentini G, Cubeddu R. Immunopharmacology studies on photosensitizers used in photodynamic therapy. Proc SPIE. 1994;2078:268–75.

    CAS  Google Scholar 

  60. Korbelik M, Dougherty GJ. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999;59(8):1941–6.

    CAS  PubMed  Google Scholar 

  61. Thong PS, Ong KW, Goh NS, Kho KW, Manivasager V, Bhuvaneswari R, et al. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma. Lancet Oncol. 2007;8(10):950–2.

    CAS  PubMed  Google Scholar 

  62. Bredell MG, Besic E, Maake C, Walt H. The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B. 2010;101(3):185–90.

    CAS  PubMed  Google Scholar 

  63. Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers. Lasers Surg Med. 2006;38(5):349–55.

    CAS  PubMed  Google Scholar 

  64. Kubler AC, de Carpentier J, Hopper C, Leonard AG, Putnam G. Treatment of squamous cell carcinoma of the lip using Foscan-mediated photodynamic therapy. Int J Oral Maxillofac Surg. 2001;30(6):504–9.

    CAS  PubMed  Google Scholar 

  65. Hopper C, Kubler A, Lewis H, Tan IB, Putnam G. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer. 2004;111(1):138–46.

    CAS  PubMed  Google Scholar 

  66. D’Cruz AK, Robinson MH, Biel MA. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study of 128 patients. Head Neck. 2004;26(3):232–40.

    PubMed  Google Scholar 

  67. Copper MP, Triesscheijn M, Tan IB, Ruevekamp MC, Stewart FA. Photodynamic therapy in the treatment of multiple primary tumours in the head and neck, located to the oral cavity and oropharynx. Clin Otolaryngol. 2007;32(3):185–9.

    CAS  PubMed  Google Scholar 

  68. Abdel-Hady ES, Martin-Hirsch P, Duggan-Keen M, Stern PL, Moore JV, Corbitt G, et al. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2001;61(1):192–6.

    CAS  PubMed  Google Scholar 

  69. Kabingu E, Vaughan L, Owczarczak B, Ramsey KD, Gollnick SO. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells. Br J Cancer. 2007;96(12):1839–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Reis e Sousa C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol. 2004;16(1):21–5.

    CAS  PubMed  Google Scholar 

  71. Sur BW, Nguyen P, Sun CH, Tromberg BJ, Nelson EL. Immunophototherapy using PDT combined with rapid intratumoral dendritic cell injection. Photochem Photobiol. 2008;84(5):1257–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol. 2006;24:519–40.

    CAS  PubMed  Google Scholar 

  73. Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 2002;62(6):1604–8.

    CAS  PubMed  Google Scholar 

  74. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998;150(5 Suppl):S146–56.

    CAS  PubMed  Google Scholar 

  75. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65(3):1018–26.

    CAS  PubMed  Google Scholar 

  76. Korbelik M, Stott B, Sun J. Photodynamic therapy-generated vaccines: relevance of tumour cell death expression. Br J Cancer. 2007;97(10):1381–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gollnick SO, Owczarczak B, Maier P. Photodynamic therapy and anti-tumor immunity. Lasers Surg Med. 2006;38(5):509–15.

    PubMed  Google Scholar 

  78. Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4(6):469–78.

    CAS  PubMed  Google Scholar 

  79. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Anatelli F, Mroz P, Liu Q, Yang C, Castano AP, Swietlik E, et al. Macrophage-targeted photosensitizer conjugate delivered by intratumoral injection. Mol Pharm. 2006;3(6):654–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y, Kinoshita M, et al. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS One. 2012;7(6):e39823.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Mroz P, Xia Y, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, et al. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine. 2011;7(6):965–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.

    PubMed Central  PubMed  Google Scholar 

  84. St Denis TG, Aziz K, Waheed AA, Huang YY, Sharma SK, Mroz P, et al. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem Photobiol Sci. 2011;10(5):792–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Mroz P, Hamblin MR. The immunosuppressive side of PDT. Photochem Photobiol Sci. 2011;10(5):751–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mroz P, Szokalska A, Wu MX, Hamblin MR. Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One. 2010;5(12):e15194.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol. 2011;7(1):75–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Szokalska A, Makowski M, Nowis D, Wilczynski GM, Kujawa M, Wojcik C, et al. Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res. 2009;69(10):4235–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Castano AP, Mroz P, Wu MX, Hamblin MR. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci U S A. 2008;105(14):5495–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Cecic I, Parkins CS, Korbelik M. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem Photobiol. 2001;74(5):712–20.

    CAS  PubMed  Google Scholar 

  91. Ray PK, Raychaudhuri S. Low-dose cyclophosphamide inhibition of transplantable fibrosarcoma growth by augmentation of the host immune response. J Natl Cancer Inst. 1981;67(6):1341–5.

    CAS  PubMed  Google Scholar 

  92. Matar P, Rozados VR, Gonzalez AD, Dlugovitzky DG, Bonfil RD, Scharovsky OG. Mechanism of antimetastatic immunopotentiation by low-dose cyclophosphamide. Eur J Cancer. 2000;36(8):1060–6.

    CAS  PubMed  Google Scholar 

  93. Zhang Q, Kang X, Zhao W. Antiangiogenic effect of low-dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma. Biochem Biophys Res Commun. 2006;342(3):824–8.

    CAS  PubMed  Google Scholar 

  94. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105(7):2862–8.

    CAS  PubMed  Google Scholar 

  95. Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14(5):329–34.

    CAS  PubMed  Google Scholar 

  96. Korbelik M, Cecic I, Merchant S, Sun J. Acute phase response induction by cancer treatment with photodynamic therapy. Int J Cancer. 2008;122(6):1411–7.

    CAS  PubMed  Google Scholar 

  97. Korbelik M, Cecic I. Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy. J Photochem Photobiol B. 2008;93(1):53–9.

    CAS  PubMed  Google Scholar 

  98. Cecic I, Korbelik M. Deposition of complement proteins on cells treated by photodynamic therapy in vitro. J Environ Pathol Toxicol Oncol. 2006;25(1–2):189–203.

    CAS  PubMed  Google Scholar 

  99. Stott B, Korbelik M. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol Immunother. 2007;56(5):649–58.

    CAS  PubMed  Google Scholar 

  100. Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett. 2002;183(1):43–51.

    CAS  PubMed  Google Scholar 

  101. Mroz P, Vatansever F, Muchowicz A, Hamblin MR. Photodynamic therapy of murine mastocytoma induces specific immune responses against the cancer/testis antigen P1A. Cancer Res. 2013;73(21):6462–70.

    CAS  PubMed  Google Scholar 

  102. Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, Moch H, et al. Gamma-radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One. 2011;6(11):e28217.

    Google Scholar 

  103. Chiriva-Internati M, Pandey A, Saba R, Kim M, Saadeh C, Lukman T, et al. Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol. 2012;31(5):321–43.

    CAS  PubMed  Google Scholar 

  104. Smith HA, McNeel DG. The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol. 2010;2010:150591.

    PubMed Central  PubMed  Google Scholar 

  105. Pandey A, Kurup A, Shrivastava A, Radhi S, Nguyen DD, Arentz C, et al. Cancer testes antigens in breast cancer: biological role, regulation, and therapeutic applicability. Int Rev Immunol. 2012;31(5):302–20.

    CAS  PubMed  Google Scholar 

  106. Brandle D, Bilsborough J, Rulicke T, Uyttenhove C, Boon T, Van den Eynde BJ. The shared tumor-specific antigen encoded by mouse gene P1A is a target not only for cytolytic T lymphocytes but also for tumor rejection. Eur J Immunol. 1998;28(12):4010–9.

    CAS  PubMed  Google Scholar 

  107. Uyttenhove C, Godfraind C, Lethe B, Amar-Costesec A, Renauld JC, Gajewski TF, et al. The expression of mouse gene P1A in testis does not prevent safe induction of cytolytic T cells against a P1A-encoded tumor antigen. Int J Cancer. 1997;70(3):349–56.

    CAS  PubMed  Google Scholar 

  108. Van den Eynde B, Lethe B, Van Pel A, De Plaen E, Boon T. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med. 1991;173(6):1373–84.

    PubMed  Google Scholar 

  109. Ramarathinam L, Sarma S, Maric M, Zhao M, Yang G, Chen L, et al. Multiple lineages of tumors express a common tumor antigen, P1A, but they are not cross-protected. J Immunol. 1995;155(11):5323–9.

    CAS  PubMed  Google Scholar 

  110. Bai XF, Liu JQ, Joshi PS, Wang L, Yin L, Labanowska J, et al. Different lineages of P1A-expressing cancer cells use divergent modes of immune evasion for T-cell adoptive therapy. Cancer Res. 2006;66(16):8241–9.

    CAS  PubMed  Google Scholar 

  111. Bilsborough J, Van Pel A, Uyttenhove C, Boon T, Van den Eynde BJ. Identification of a second major tumor-specific antigen recognized by CTLs on mouse mastocytoma P815. J Immunol. 1999;162(6):3534–40.

    CAS  PubMed  Google Scholar 

  112. Lethe B, van den Eynde B, van Pel A, Corradin G, Boon T. Mouse tumor rejection antigens P815A and P815B: two epitopes carried by a single peptide. Eur J Immunol. 1992;22(9):2283–8.

    CAS  PubMed  Google Scholar 

  113. Levraud JP, Pannetier C, Langlade-Demoyen P, Brichard V, Kourilsky P. Recurrent T cell receptor rearrangements in the cytotoxic T lymphocyte response in vivo against the p815 murine tumor. J Exp Med. 1996;183(2):439–49.

    Google Scholar 

  114. Markiewicz MA, Fallarino F, Ashikari A, Gajewski TF. Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. Int Immunol. 2001;13(5):625–32.

    CAS  PubMed  Google Scholar 

  115. Ni B, Lin Z, Zhou L, Wang L, Jia Z, Zhou W, et al. Induction of P815 tumor immunity by DNA-based recombinant Semliki Forest virus or replicon DNA expressing the P1A gene. Cancer Detect Prev. 2004;28(6):418–25.

    CAS  PubMed  Google Scholar 

  116. Brichard VG, Warnier G, Van Pel A, Morlighem G, Lucas S, Boon T. Individual differences in the orientation of the cytolytic T cell response against mouse tumor P815. Eur J Immunol. 1995;25(3):664–71.

    CAS  PubMed  Google Scholar 

  117. Uyttenhove C, Maryanski J, Boon T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med. 1983;157(3):1040–52.

    CAS  PubMed  Google Scholar 

  118. Kinoshita M, Miyazaki H, Ono S, Inatsu A, Nakashima H, Tsujimoto H, et al. Enhancement of neutrophil function by interleukin-18 therapy protects burn-injured mice from methicillin-resistant Staphylococcus aureus. Infect Immun. 2011;79(7):2670–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Verdrengh M, Tarkowski A. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect Immun. 1997;65(7):2517–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity. 2004;21(2):215–26.

    CAS  PubMed  Google Scholar 

  121. Massey E, Paulus U, Doree C, Stanworth S. Granulocyte transfusions for preventing infections in patients with neutropenia or neutrophil dysfunction. Cochrane Database Syst Rev. 2009;(1):CD005341.

    Google Scholar 

  122. de Vree WJ, Essers MC, de Bruijn HS, Star WM, Koster JF, Sluiter W. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res. 1996;56(13):2908–11.

    Google Scholar 

  123. Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, et al. Influence of intra-articular neutrophils on the effects of photodynamic therapy for murine MRSA arthritis. Photochem Photobiol. 2010;86(2):403–9.

    CAS  PubMed  Google Scholar 

  124. Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, et al. Photodynamic therapy using intra-articular photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect. Lasers Surg Med. 2011;43(3):221–9.

    PubMed Central  PubMed  Google Scholar 

  125. Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, et al. Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol. 2012;88(1):227–32.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Research in the Hamblin laboratory is supported by US NIH Grant R01AI050875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vatansever, F., Hamblin, M.R. (2015). Photodynamic Therapy and Antitumor Immune Response. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics